Strategic work plan
2014 - 2019

Implementing Agreement on Demand Side Management Technologies and Programmes (DSM IA)
STRATEGIC WORK PLAN 2014 - 2019

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>2</td>
</tr>
<tr>
<td>DSM Participants</td>
<td>2</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>3</td>
</tr>
<tr>
<td>2. RationalE</td>
<td>3</td>
</tr>
<tr>
<td>3. Strategic Direction</td>
<td>5</td>
</tr>
<tr>
<td>3.1. CERT and EUWP strategies</td>
<td>5</td>
</tr>
<tr>
<td>3.2. DSM Aims and objectives</td>
<td>6</td>
</tr>
<tr>
<td>4. Scope</td>
<td>7</td>
</tr>
<tr>
<td>4.1. Annexes & Projects</td>
<td>8</td>
</tr>
<tr>
<td>4.2. Research areas</td>
<td>9</td>
</tr>
<tr>
<td>5. ExCo Meetings & Fee Structure</td>
<td>10</td>
</tr>
<tr>
<td>6. DSM management</td>
<td>10</td>
</tr>
<tr>
<td>7. Contractual and Management Requirements</td>
<td>11</td>
</tr>
<tr>
<td>8. DSM legal text</td>
<td>11</td>
</tr>
<tr>
<td>9. IEA framework</td>
<td>11</td>
</tr>
<tr>
<td>9.1. Contribution to Technology Evolution/Progress</td>
<td>12</td>
</tr>
<tr>
<td>9.2. Contribution to Technology Deployment/Market Facilitation</td>
<td>12</td>
</tr>
<tr>
<td>9.3. Contribution to organisational and behaviour Change</td>
<td>12</td>
</tr>
<tr>
<td>9.4. Policy Relevance</td>
<td>13</td>
</tr>
<tr>
<td>10. Contribution to Information Dissemination</td>
<td>13</td>
</tr>
<tr>
<td>11. Engagement with IEA Member and Partner Countries</td>
<td>13</td>
</tr>
</tbody>
</table>
PREFACE

Demand Side Management, (DSM), has since long been a concept to contribute to energy (system) efficiency by influencing the use of energy while maintaining or raising the level of customer services.

Demand Side Management is a concept, not a thing. Concepts can be interpreted and applied in different ways. This certainly goes for DSM in different parts of the world with different types of markets and different traditions for management.

The importance of this concept has been dramatically underlined by the recent reporting on climate issues and deliberations over energy security. Considerations that show how important it is to find different ways of deploying and using, even already existing, efficient technologies and to make use of a combination of different approaches to do so, such as business models and energy system analysis, market integration, policies, and behavioural changes and behavioural knowledge.

The problem to improve the management of energy systems to deliver the services needed and ensure sustainability is universal among countries and engages several technologies, including the integration of the supply-side, and cuts across all sectors. This is the real challenge and requires close cooperation also with several other Implementing Agreements.

The DSM Implementing Agreement was founded in the early Nineties and has since engaged administrations, companies and organisations that are working on defining, shaping and executing research within the broad scope of DSM.

By the very nature of Demand Side Management, working with management, policy-applications and behaviour, this Implementing Agreement has been different from the pure technology-oriented Implementing Agreements, and will always be Different, but complementary to other activities of the technology network.

Research that combines the technology with research on how to implement it is the core of our business. To reach our goals, the development of business models and knowledge of behaviour is key. Therefore many of our projects are outreach activities that complete the scope of this Implementing Agreement.

A strategic work plan is the place to (re)define what we consider to be the content of the DSM concept. A scope we like to define as Integrated Demand Side Management (IDSM). In the past DSM activities were reserved for improvements in the use of energy. Technology development, however, now provides new opportunities with small-scale local generation, storages and smart applications in grid, metering and appliances that facilitate communication and response from the demand side to balance supply situations. All these have to be integrated to deliver satisfactory results. Therefore IDSM is a concept with strong added value to the “family” of Implementing Agreements and the IEA work.

This present document has been prepared for the IEA EUWP and CERT in addition to the DSM’s application for a next 5-year term.

DSM PARTICIPANTS

The Programme has participants and representation as follows

<table>
<thead>
<tr>
<th>Country/Sponsor</th>
<th>EXCO Member/Alternate (A)</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>Boris Papousek</td>
<td>Grazer Energiagentur GES.m.b.H</td>
</tr>
<tr>
<td>Belgium</td>
<td>Francois Brasseur</td>
<td>Ministry of Economic Affairs</td>
</tr>
<tr>
<td>Finland</td>
<td>Jussi Mäkelä</td>
<td>TEKES</td>
</tr>
<tr>
<td></td>
<td>Pekka Koponen (A)</td>
<td>VTT Technical Research Center Finland</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

In November 2012, at the Executive Committee meeting in Espoo, Finland, the Executive Committee members discussed the previous work plan, and the evaluations that were held.

Based on the outcome it was decided to apply for a 5-year extension and to continue the work that has been done so far.

In September 2013 the EUWP decided to advise CERT to grant a 2-year extension.

In December 2013 the CERT invited the DSM IA to send additional information to the EUWP in order to get an extension until 2019.

Based on the discussions with CERT, EUWP and some Implementing Agreements, the Executive Committee of the DSM IA agreed at the Executive Committee meeting in March 2014 in New Zealand on this adapted strategy and work plan.

2. RATIONALE

Demand Side Management (DSM) refers to all changes that originate from the demand side of the market. The market for energy efficiency is however not sufficiently developed to allow customers/users to make the fully informed choices. There is a dire need to improve the offers to them and to improve their capacities to choose.
The World Energy Outlook 2012, WEO 2012, outlines six steps for improvement of energy efficiency and all of them apply well to DSM and the IEA DSM Programme.

Energy efficiency should be:

- **Visible** (The energy performance of each energy end-use and service needs to be made visible to the market.)
- **Priority** (The profile and importance of energy efficiency needs to be raised.)
- **Affordability** (Create and support business models, financing vehicles and incentives to ensure investors in energy efficiency reap an appropriate share of the rewards)
- **Normal** (Energy efficiency needs to be normalized if it is to endure. Resulting benefits from learning and economies of scale help make the most energy-efficient option the normal solution.)
- **Real** (Monitoring, verification and enforcement activities are needed to verify claimed energy efficiency.)
- **Realisable** (Achieving the supply and widespread adoption of energy efficient goods and services depends on an adequate body of skilled practitioners in government and industry.)

WEO 2012 furthermore shows in their energy efficient scenario that there is a huge cost-effective (profitable) potential to be harvested already with today’s technologies.

Figure 1. Change in global primary energy demand by measure & by scenario (WEO 2012)

Efficiency is the single largest contributor to energy savings in achieving the New Policies Scenario and 450 scenario which is assumed to be sufficient to reach the 2 degrees maximum climate warming.
3. STRATEGIC DIRECTION

The DSM Strategic Plan covers a five-year period from March 2014 to February 2019, and builds on the achievements and lessons learnt during the previous terms, which are, as reviews of the first term\(^1\) indicate:

- The DSM IA has been effective in achieving its stated objectives.
- The existing Contracting Parties regard participation in the DSM IA as cost-effective.
- Other public and private sector organisations value the role that the DSM IA plays in supporting the co-ordination of international energy efficiency policies.
- The Results produced during the years are, with few exceptions, valid and relevant for many users but not sufficiently disseminated. There is a case to make them available for wider audiences by creation of a “DSM-University”.

Since the development of the last DSM IA Strategic Plan, international ambitions in the field of energy efficiency have grown, and play a more central role in the approach by the IEA as a whole, as shown in their publications WEO and Energy Technology Perspectives, ETP.

The DSM Executive Committee takes a holistic/whole-system view of DSM, including technology, people and their interaction within national and international contexts.

As such, the DSM Executive Committee members believe that the DSM IA can be effective as a result of developing and promoting the policies indicated in this section, which are designed to achieve the following aims:

- to achieve large-scale energy efficiency improvements by deployment of existing and improved technologies taking into account the insights of social studies together with analysis of energy systems in technical, business, market and regulatory contexts.
- to develop, improve and promote business, behavioural and operating models that enable the (energy)market to deliver the services from energy in a clean, undisrupted and economically effective way.
- to support applied research as necessary to fill knowledge gaps on the previous two points, in order to increase the deployment and efficient use of technologies.
- to improve energy efficiency by understanding the customers needs (the demand side) and applying or improving the existing technologies in the most effective way.

There is an increasing requirement within DSM to factor in that more general human interface. This IA provides tools and approaches, targeted at specific groups, to enable that interface to happen effectively.

3.1. CERT AND EUWP STRATEGIES

The DSM IA’s End of Term Report (2008-13) demonstrated a close alignment with the current strategies of the IEA, CERT and EUWP, particularly in the following areas:

- Provide energy end-use technology policy advice.
- Engagement with relevant organisations.
- Strengthening of the technology network, by playing an active role in EUWP bodies like BCG and ECG.
- Review relevant IEA Secretariat draft publications.

\(^1\) See end of term report 2008-2013
The EUWP has in its survey of Implementing Agreements shown high priorities for DSM to address both the “building level” and the “community level”. During the next term, the DSM IA will continue to expand these activities, as identified below, and to strengthen communication with the EUWP, to remain consistent with the aims of the CERT and EUWP.

3.2. DSM AIMS AND OBJECTIVES

Energy users are primarily interested in the services that they require for their work and living. These services are delivered from a combination of energy and an installation that transforms the energy to services. Ideally the user would prefer the least-cost combination of these two. In modern society there is a multitude of such combinations, which leaves the user with a difficult choice to calculate cost, impact, reliability, emissions etc. This requires DSM activities to facilitate the choice.

The vision of the IEA DSM IA is therefore that:

Demand side activities should be active elements and the first choice in all energy policy decisions designed to create more reliable and more sustainable energy systems[^2]

Within this vision the main issues of the DSM Programme are:

1. **Security of supply:**
 Demand side management, and especially demand response, has an important role in managing temporary shortages in generation, transmission and distribution capacity. This is becoming increasingly important as the penetrations of distributed generation and use of intermittent renewable energy sources has increased.
 - DR, “demand response”, to keep power balances, power flows, power quality and loading of the network components safely within constraints thus avoiding black-outs and power quality violations. Reduction of energy demand as a means to diversify supply since it is easier to find alternative supply for a lower level of demand and thereby being less dependent on large-scale generation and distribution systems.
 - Controllable distributed generation and local energy storage are a part of a solution to a “demand side problem” when used to complement the limitations of load management that is generally more cost efficient. Such combinations should be considered in achieving the goals of a Least-Cost system.

2. **Reduction of green-house gas emissions:**
 Reducing the demand and/or shifting demand from a system supplied with a carbon-intensive fuel to a “carbon-lean” system is a way of achieving environmental targets notably the climate targets that are codified in the Kyoto Agreement and the Conference of the Parties that followed.

3. **Cost of supply:**
 Increased utilisation of demand side management enables achieving the above-mentioned objectives with much lower costs than investing only in supply system improvements. The demand side has unused low cost potential for improving energy efficiency and dynamic demand flexibility. Less flexible capacity is needed to solve the same problem with DSM than in the supply infrastructure, because some losses in networks and conversions are avoided.

The main mission of the Programme is to provide to stakeholders:

[^2]: Explanatory note: Demand side options have to be expressed in terms of, and made available as, equal to supply side options in order to facilitate a comparison. An energy system with a low demand requires less energy and facilitates the expanded use of renewable energy. The lower demand and the greater use of renewable resources should be promoted as a way to arrive at sustainable supply.
• Material that is readily applicable for them when crafting and implementing policies and measures.
• Knowledge about technology and applications that either facilitate operations of energy systems or facilitate necessary market transformation.
• Insights that enable and promote behavioural interventions to ensure the uptake and implementation of energy efficiency in the society.

The stakeholders should as a consequence be able to structure and design “smart” systems with “High-value Distributed Energy Resources (DER)” that apply “IDSM – Integrated Demand Side Management”. Such systems will be characterised by:

1. Minimised
 a. Costs and
 b. Emissions (in particular GHG)
2. Empowerment of customers/users and facilitation of their choice of appropriate sustainable solutions
3. Maintained or maximised
 a. Reliability (of services)
 b. Security
 c. User/stakeholder values (of services)

4. **SCOPE**

The basis of energy efficiency and rational energy use is coordinated action to make the best fit between supply and demand. As this topic has been studied in detail, some might argue that “DSM is ready and no longer a research topic”. At the same time technology, both on the Energy and the ICT keep developing rapidly. New measures are implemented at an increasing speed, due to developments in renewable and ICT technologies. To get the maximum effect of these measures/technologies they should be synchronised: balanced actions that support each other.

Maximum impact will be realised if distributed generation, demand response and energy efficiency are not only synchronised, but also integrated in a coherent approach. In this integration non-technology issues play an important part. Business models, and knowledge of behaviour and organisation change are not added-on, but melted into a new “integrated” demand side approach. An approach that is yet not fully understood, and worthwhile to develop bases on systematic research in this Implementing Agreement and collaboration with other parts of the IEA that can contribute to IDSM.

This is the “Integrated Demand Side Management” (IDSM) that this Implementing Agreement is trying to achieve.

The DSM toolbox has through its earlier work developed the tools for both the technology issues load level and load shape changes and can therefore provide advice and solutions to:

3 Resources are both physical (fuel and technology) and human. The user is one of the resources.
4 Integration of Load Management (DR), Load Level (EE), Distributed Generation (DG), Storage and Renewable Energy (RES)
• Reduce the demand peaks, especially when utilisation of power comes close to its limits of availability
• Shift the loads between times of day or even seasons
• Fill the demand valleys to better utilise existing power resources
• Reduce overall demand (strategic saving) in the context of delivering the required energy services by use of less energy (and not a reduction in services).
• Provide strategic growth especially to shift between one type of supply to another with more favourable characteristics, for example, in terms of the environment

These tools have however been developed primarily with focus on an energy utility as the main actor. Energy efficiency is in the emerging society not only an issue for a bipolar relationship (utility and customer) but involves several new components. There is a need to understand and handle the mechanisms that are required to decide upon and put DSM that serves societal issues, such as global warming, the broad variety of customer benefits etc., in place. This is about planning (to determine and target the potential) and about achieving market acceptance to get an uptake of the technologies and the necessary change in behaviour.

The potential for cost-effective energy efficiency is already well established. The IEA WEO 2012 estimated it to be of such significant importance that it could both reduce the emissions of GHGs and at the same time reduce the bills for energy use.

\[\text{Result} = \text{Potential} \times \text{Acceptance} \]

The potential per se is therefore not the issue. The problem is rather to get sufficient acceptance and market up-take for energy efficiency measures by the users of energy. Any huge number multiplied with zero will still stay zero!

Acceptance, understanding and uptake have been too low to release the potential in full. DSM means working on both these issues in order to get a full result by a large-scale deployment of energy efficiency.

This combination of technological and market transformation issues is what defines the scope for DSM. Below captured in a simple matrix, that allows us to position the work.

4.1. ANNEXES & PROJECTS

In its long history, the Demand Side Management Implementing Agreement has managed a number of Tasks. Sometimes a Task is completed in full within the available needs and capabilities at that time.

Often, our results lead to more questions or challenges. The IA Executive Committee then chooses to extend a running Task, instead of simply defining a completely new Task.

To achieve a full portfolio, the DSM IA uses the matrix below to identify the need for further research activities.
Completed tasks are shown in italics and current in bold text.

6 Task 1: Subtask 9 – Evaluation
Guidebook on the impact of DSM and Energy Efficiency Programmes
Task 2: Communications Technologies for Demand-Side Management
Task 3: Technology procurement
Task 5: Marketing of Energy Efficiency
Task 6: Mechanisms for Promoting DSM and Energy Efficiency in Changing Electricity Businesses
Task 7: Market Transformation
Task 8: Demand-Side Bidding in a Competitive Electricity Market
Task 9: The Role of Municipalities in a Liberalised System
Task 10: Performance Contracting
4.2. RESEARCH AREAS

Application of the above motivates particular focus and priority on the following areas for research and development.

A. Distributed Energy Resources in (smart) cities
 With a higher degree of decentralisation more of the crucial developments in the building of systems will take place in municipalities, cities, regions. This would also be a logic follow-up of the IEA DSM Task 9.

B. Market Design to enable DER-systems (IDSM)
 Institutional settings are important to improve and make use of the flexibility of systems and the integration of resources depends on how responsibilities and incentives need to be designed.

C. Market design to incentivise industry compliance
 Both utility and industrial customers will have to be more active in the dissemination of DER systems. This deals with both business models and rules for trading of obligations. 7

D. Utilities best practices to develop DER business
 Utilities develop new business activities that may be very different and would be worth to analyse and compare

At Executive Committee meetings gaps in the portfolio of the Implementing Agreement are discussed. Based on the input from the member countries dedicated members produce “1 pagers” for ideas that form the bases
for new work. If accepted, a Task proposal is developed. Seed money from the common fund is made available to include experts in the Task definition.

This way of creating Tasks is new and serves two goals:

- only put time and money in research proposal that have a clear interest of the implementing agreement
- different countries have different budget procedures. Some need an approved short proposal at an early stage to get the budget process started, others want the full proposal and then decide “on the spot”. In this way we accommodate our members in the best possible way.

5. **EXCO MEETINGS & FEE STRUCTURE**

Executive Committee meetings are held every six months, generally in the spring and autumn (Northern hemisphere). Executive Committee members and Operating Agents are required to attend each meeting. The meeting agenda is drafted by the DSM IA Executive Secretary. DSM IA participants may request that specific items be placed on the agenda.

The Executive Committee has agreed to the establishment of a Common Fund to support the responsibilities and administrative activities for the entire programme of the DSM IA. A financial accounting of the fund is presented at each Executive Committee meeting and the Common Fund budget for the up-coming year is proposed by the Executive Committee Chair. Upon approval, the Executive Secretary will invoice each participating Contracting Party/Sponsor. Prompt payment is expected. At present, the sum per country is USD 8,000. Plans to include the management of the DSM IA together with the DSM University, see below, (Task Zero) has been proposed and participants (countries and sponsors) will be requested to raise the sum from USD 8,000 to USD 11,000/year to the Common Fund.

Between Executive Committee meetings electronic ballots can be used. Voting is done in accordance with the bylaws of the IEA & the Implementing Agreement.

6. **DSM MANAGEMENT**

Chair & Role:
The Chairman is responsible for the overall management of the DSM IA. The Executive Committee shall every second year elect a Chairman.

Vice Chairs and roles:
Vice-Chairs assist the Executive Committee Chairman with the overall management of the DSM IA and one Vice-Chair is appointed to manage the finances i.e. the Common Fund. The Vice-Chair reports on the financial status twice a year at Executive Committee meetings. Vice-Chairs are elected every two years.

Visibility Committee Chairman & role
The Visibility Committee Chairman is responsible for the overall management of the DSM IA’s visibility, through the website, Spotlight newsletter, social media, etc. A communications plan has recently been developed.

Executive Secretary & role:
The Executive Committee Secretary responsibilities:

- Make and distribute agendas, minutes and other documents of Executive Committee meetings
- Prepare decisions and recommendations
- Assist the Executive Committee and its Chairman in carrying out their responsibilities
Assist the Executive Committee in the overall co-ordination of the work in the different Annexes
Undertake such other activities as may be required by the Executive Committee to assist in carrying out its responsibilities under the DSM IA
The Secretary shall furnish the Executive Committee with such information concerning its work as the Executive Committee may request

Annual reports:
The Annual Report is produced annually. Electronic copies are distributed no later than 31 January each year, and printed versions are sent out in March. The Annual Report 2013 was available in 280 copies and was distributed to Executive Committee members, Operating Agents, members of the EUWP, members of the EEWP and entities interested in the DSM IA.

7. CONTRACTUAL AND MANAGEMENT REQUIREMENTS

The DSM IA’s work will continue to be based on traditional approaches where resources are provided by cost-sharing and/or Task-sharing.

Role & responsibility of Operating Agents

The official Operating Agent (OA) is the Contracting Party of the country that agrees to take on the responsibility of managing a Task. The role is assigned to one (sometimes two) individuals within, or under contract, either directly or through another organisation, to that Contracting Party. This individual is also referred to as the Operating Agent.

Responsibilities:
The Operating Agent is responsible for the effective management of the Task work, and services and should have the following qualities:

- Sufficient experience in technical research and project management;
- Adequate technical and financial support from the Contracting Party;
- Competent communication skills;
- Resources (time, money, facilities) to properly manage the Task; and
- Commitment for the duration of the Task

The Operating Agent for each Task shall be responsible for the overall technical and administrative management of the work and for implementing the decisions of the Executive Committee. The Operating Agent for each Task shall:

- Prepare and submit annual reports on progress made on work
- Attend bi-annual Executive Committee meetings and provide a report on the status of the Task.

8. DSM LEGAL TEXT

Updated version (May 2014). See Appendix A.

9. IEA FRAMEWORK

The DSM Implementing Agreement is a collaboration between countries. Results are primarily aimed at these participants. The results of the work will also be of use to other parts of the IEA family. As such, the results of the work will be actively distributed/disseminated within the IEA.

This works both ways. Results of other Implementing Agreements and the IEA Secretariat can and will be incorporated in DSM IA activities.
9.1. CONTRIBUTION TO TECHNOLOGY EVOLUTION/PROGRESS

The complexity of combining a multitude of technologies to a functioning cost-effective system requires a broad set of skills from technology to economics, politics and behavioural sciences. Such competences are represented in the Executive Committee and selected as experts in the Tasks. It therefore also requires several contact surfaces with many disciplines.

On-going technology developments emphasise the complexity since (a) ICT progress is fast and moves into (b) smarter appliances and (c) energy supply is miniaturised and allows for distributed generation in small local scale.

To cover all these aspects the IEA DSM IA is now developing a “DSM-University” in order to disseminate its results better but also to do so in close contact with relevant parts of the IEA community.

9.2. CONTRIBUTION TO TECHNOLOGY DEPLOYMENT/MARKET FACILITATION

Technology without market adoption has limited value to the society. Market deployment is not only about the capabilities of the technology, but perhaps more about the markets’, or the end-users’, demands and their understanding of how the new technology can meet those demands.

The strength of the IEA DSM IA is the focus on comparing, developing and disseminating business, operational, regulatory and behavioural models that will bring the technology to the market. One of the current Tasks (Task 16) deals specifically with innovative Energy Service business models to implement and deploy any kind of efficiency technology with market based instruments.

While the development of business models is important on a micro level to ensure technology deployment, ensuring a knowledge/experience transfer from the market/end-users back to the technology developer is crucial on a macro level. Several of the Tasks within the DSM IA address this issue, i.e. Task 23 on The role of Customers Delivering Effective Smart Grids.

9.3. CONTRIBUTION TO ORGANISATIONAL AND BEHAVIOUR CHANGE

The contribution of this programme to behaviour change is through:

- A better understanding of people and organisations and the development of culturally appropriate and targeted tools to inform and support behaviour change
- Evaluation of the impact of behaviour change programmes
- International benchmarking to compare and contrast approaches and apply learning’s and recommendations
• Better integration of behavioural change and other approaches (policies, business, operational and regulatory) to enable large scale adoption of DSM

The development of new learning from the understanding gained from all the above, and also the development of a common language to afford shared learning across cultural boundaries.

Task 24 specifically addresses behaviour change and underlying behavioural models used to design, implement and evaluate successful (or not so successful) interventions (policy, market and technology interventions). Understanding the ‘human’ aspect of energy use and its complex interaction between stakeholders from different disciplines and sectors also enables a more ‘human’ solution to the problems.

The concept of organisational change as a consequence of the increasing participation of consumers (prosumers) in the system is a megatrend this IA should be looking at and include as part of an environmental (contextual) overview.

9.4. POLICY RELEVANCE

We will translate all findings from Tasks under this agreement to assist policy-makers with interventions at both national and regional levels.

We will ensure recommendations for policy interventions are country-specific, but building upon the learning’s from other countries.

The DSM IA will provide policy-relevant material to the IEA Secretariat for inclusion in the WEO and other IEA publications where relevant.

The DSM IA seeks to provide relevant:

• Data
• Synthesis and analysis
• Evidence
• International comparisons, and
• Targeted recommendations to inform national and regional policy.

10. CONTRIBUTION TO INFORMATION DISSEMINATION

The Implementing Agreement should seek to integrate the learning’s from across Tasks within the IA, and develop an on-going, integrated story of DSM.

To achieve this, the Executive Committee is developing a Task Zero that will be overarching and crosscutting and the DSM University may be a mechanism by which to do this.

We will have to offer a ‘translation’ service to afford audience-specific learning’s from Tasks. Specific articles in the DSM Newsletter, the increasing number of publications in (semi) scientific journals and the webinars are (recent) examples of this approach. New Tasks will have to take this into account as part of their work plan.

Policy briefs for policymakers will be considered as part of the output as of now.

11. ENGAGEMENT WITH IEA MEMBER AND PARTNER COUNTRIES
The steps to define engagements with IEA are the same as the ones that define “integrated” DSM: coordinated, synchronised and integrated.

To coordinate, the actions are to inform the other members of the IEA family, pinpoint the possible links and inform participants.

There is also a close cooperation with the following countries that have been invited as observers: SANEDI (South Africa), NRDC (China) and EGAT (Thailand)

APPENDIX A

Legal Text (updated May 2014)