DSM Implementing Agreement (IA)
Task Package
IEA DSM Programme

Member Countries
- Austria
- Belgium
- Finland
- India
- Italy
- South Korea
- Netherlands
- New Zealand
- Norway
- Spain
- Sweden
- Switzerland
- United Kingdom
- United States

Sponsors
- Regulatory Assistance Project (RAP)
- European Copper Institute (ECI)

Projects and Lead Countries

Ongoing

<table>
<thead>
<tr>
<th>Task</th>
<th>Project Description</th>
<th>Lead Country(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Competitive Energy Services</td>
<td>Austria</td>
</tr>
<tr>
<td>17</td>
<td>Integration of DSM, Energy Efficiency, Distributed Generation and Renewable Energy Sources</td>
<td>Austria & The Netherlands</td>
</tr>
<tr>
<td>20</td>
<td>Branding of Energy Efficiency</td>
<td>India/RAP</td>
</tr>
<tr>
<td>21</td>
<td>Standardisation of Energy Saving Calculations</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>23</td>
<td>Role of Customers in Delivering Effective Smart Grids</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>24</td>
<td>Closing the Loop – Behaviour Change in DSM from Theory to Policies and Practice</td>
<td>New Zealand & The Netherlands</td>
</tr>
</tbody>
</table>

Completed

<table>
<thead>
<tr>
<th>Task</th>
<th>Project Description</th>
<th>Lead Country(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>International Database on Demand Side Management Technologies & Programmes</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>2</td>
<td>Communication Technologies for Demand-Side Management</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>3</td>
<td>Cooperative Procurement of Innovative Technologies for Demand-Side Management</td>
<td>Sweden</td>
</tr>
<tr>
<td>4</td>
<td>Development of Improved Methods for Integrating Demand-Side Options into Resource Planning</td>
<td>United States</td>
</tr>
<tr>
<td>5</td>
<td>Techniques for the Implementation of Demand-Side Management Technology in the Marketplace</td>
<td>Spain</td>
</tr>
</tbody>
</table>
Task 6 DSM and Energy Efficiency in Changing Electricity Business Environments | AUSTRALIA | COMPLETED
Task 7 International Collaboration on Market Transformation | UNITED KINGDOM | COMPLETED
Task 8 Demand-Side Bidding in a Competitive Electricity Market | UNITED KINGDOM | COMPLETED
Task 9 The Role of Municipalities in a Liberalised System | FRANCE | COMPLETED
Task 10 Performance Contracting | SWEDEN | COMPLETED
Task 11 Time of Use Pricing and Energy Use for Demand Management Delivery | UNITED KINGDOM | COMPLETED
Task 13 Demand Response Resources | UNITED STATES | COMPLETED
Task 14 Market Mechanisms for White Certificates | ITALY | COMPLETED
Task 15 Network Driven DSM | AUSTRALIA | COMPLETED
Task 18 Demand Side Management and Climate Change | AUSTRALIA | COMPLETED
Task 19 Micro Demand Response and Energy Saving | UNITED KINGDOM | COMPLETED
Task 22 Energy Efficiency Portfolio Standards | INDIA/RAP | COMPLETED

www.ieadsm.org
ENERGY EFFICIENCY & DSM BENEFITS

Energy efficiency is a top energy issue for many world leaders, but unfortunately, old habits are hard to break. To address this, the IEA Demand Side Management Programme is dedicated to showing why energy efficiency and DSM should be the first choice in energy saving measures for...

Society – Because the use of DSM and EE reduces greenhouse gases, pollution, and negative health affects caused by burning fossil fuels.

Governments – Because they care about energy system reliability, energy security, climate change, and meeting Kyoto and other GHG reduction targets.

Utilities and Energy Companies – Because the use of DSM measures can help prevent blackouts, shave peak demands, defer the need for new sources of power – including generating facilities, power purchases, and transmission and distribution capacity additions – and make the electricity systems operate more reliably. It also allows them to offer special services to their customers.

Customers – Because DSM measures allow users to save money or receive financial incentives for reducing or deferring energy use and to minimize exposure to rolling blackouts.

IEA DSM PROGRAMME ACHIEVES RESULTS

DATABASES
International Database on DSM – Developed INDEEP (International Database on Energy Efficiency Programmes), a comprehensive international database in four languages, describing over 220 utility DSM programmes in 15 countries.

Mechanisms for Promoting DSM and EE in Changing Electricity Businesses – Created two databases on 1) 99 existing mechanisms (policy, regulatory, financial, and commercial) for promoting DSM and EE and 2) 25 new mechanisms or promoting DSM and EE.

DSM and Climate Change – Developed two case study databases 1) DSM Projects Database: Detailed case studies of 17 DSM projects and 2) Emissions Reduction Projects Database: Description of 13 greenhouse gas emissions reductions projects.

Closing the Loop: Behaviour Change in DSM: From Theory to Practice – Created a social expert platform which has over 200 experts from 21 countries.

HANDBOOKS/GUIDELINES/BEST PRACTICES
Impact of DSM and EE on Kyoto’s GHG Targets – Developed guidelines to help governments evaluate the impact of national and regional DSM and Energy Efficiency programmes for achieving Kyoto greenhouse gas targets.

Improved Methods for Integrating Demand-Side Options into Resource Planning – Published a guidebook on approaches and methodologies for analysis and planning of demand-side programmes and integration of DSM option in utility resource planning.

Demand-Side Bidding – Produced A Practical Guide to DSB, which provides practical guidelines for both the electricity industry and customers on the rules for DSB and how to establish and participate in DSB schemes.

Demand Response Resources – Created a Project Guidebook, which provides a roadmap for assessing DR integration into the market. The book includes tools and can be used as a teaching guide for a DR professional certification programme.
Role of Municipalities in a Liberalized System – Compiled case studies of “best practices” to serve as models for municipalities to effectively implement energy efficiency measures in a liberalized market.

Market Mechanisms for White Certificate Trading – Produced a Sourcebook highlighting the experiences gained in the design and/or operation of White Certificate programmes in France, Great Britain, Italy, Netherlands, and New South Wales, Australia.

Integrated Resource Planning – Published a guidebook for planners on effective methods, techniques, and models for incorporating DSM into utility resource planning.

Network-Driven DSM – Surveyed network DSM projects around the world and prepared 44 case studies with conclusions on the DSM measures used.

Energy Portfolio Standards – Published Best Practices in Designing and Implementing Energy Efficiency Obligation Schemes based on the analysis of 19 different energy efficiency obligation schemes implemented around the world.

Integration of Demand Side Management Energy Efficiency, Distributed Generation, Renewable Energy Sources and Energy Storages – Completed Phase II and produced numerous reports, including Stakeholders involved in the deployment of micro-generation and new end-use technologies.

Standardisation of Energy Savings Calculations – Produced report on the most relevant guidelines and standards – national and international – on energy savings calculations.

MARKET RESPONSES
Communication Technologies for ESCOs – Defined a variety of innovative energy-related services to implement through cost-effective communication technologies to help ESCOs provide better services at lower costs. In addition, developed a prototype communications gateway, FlexGate, which overcomes many of the difficulties in providing wide-ranging, diverse services.

Cooperative Procurement – Created cooperative procurement buyer groups to help stimulate the development of innovative, energy-efficient products. Recipients of the IEA DSM Award of Excellence—AEG clothes dryer that cut energy use in half, two ABB high efficiency electric motors that reduced loses by 20-40%, and copiers from Ricoh and Canon that reduced energy consumption by 70%.

Market Transformation – Conducted an international investigation on attitudes, habits, and the use of energy efficient products. Results provided invaluable information needed when talking about “selling” EE with multinational market actors and industry.

EE & DSM for Smaller Customers – Initiated nine pilot programmes to test different marketing strategies. Results helped to better understand the successful marketing of energy efficient products and DSM measures to residential and small commercial/industrial customers.

Time-of-Use Pricing and Energy Use for Demand Management Delivery – Developed recommendations on 1) methodologies, benefits and costs of providing disaggregated energy use feedback to smaller customers to motivate energy savings, 2) Time of Use Pricing for smaller customers to motivate demand profile shape change, and 3) demand side bidding for smaller customers.

Competitive Energy Services – Serving as a research and expert platform for national implementation activities. Holding Energy Service Expert Platform dissemination workshops (locations include Brussels, Helsinki, New Delhi, Deventer, Graz and Vienna).

Role of Customers in Delivering Effective Smart Grids – Assessing and reporting on the impact of markets on customers’ willingness to participate in Smart Grids.
The IEA DSM Programme launched its 2014-2019 strategic plan with the subtitle “Energy Efficiency is not difficult – it is only complicated”. The technological aspect is fairly straightforward and often already covered by existing knowledge and technology, but getting it bought, installed, used and maintained correctly is a whole other matter.

DSM refers to all changes that originate from the demand side of the market in order to achieve large-scale energy efficiency improvements through deployment of improved technologies or changes in end-user behaviour and practices. The market organisation in each country impacts the changes and involved actors. In many cases the energy sector plays an active role.

The necessity to strive for energy efficiency is underlined in IEA’s 2012 World Energy Outlook. Energy Efficiency is the single most important option to reduce global energy use, and thereby vital in every climate and economic policy (see figure).

Most IEA Implementing Agreements (Programmes) are working in very specific fields of Energy Technology Research and Development.

The DSM Programme does not focus on a specific technology, but is cross-cutting. It delivers to its stakeholders materials that are ready to be used by them when crafting and implementing policies and measures.

The Programme also delivers technology solutions and applications that either facilitate operations of energy systems or facilitate necessary market transformations.

On the technology side, the main Programme focus is integrating different kinds of renewables, storage options and Demand Response technology. This is done by using the knowledge of system operators and the latest ICT developments.

Unique in this approach is that studies are focused on the end-user. With the continued development of Smart Grids, the end-users are a key player in the technology’s success and must be actively involved.

The Programme functions in a truly global context, and therefore, good monitoring and evaluation systems are needed to show successful outcomes. Projects on monitoring, labelling and standardisation of energy efficiency are helping the participating countries keep track of their results and compare themselves with other countries.

Visit www.ieadsm.org to learn more about our work
The formula “Result = Potential * Acceptance” is the idea behind a number of our other activities. We know the potential, but we need to improve (e.g., with business models that provide end-users with better options to be efficient).

Models that can be applied by providers of energy services and also by policymakers who decide what measures should be supported and how to stimulate acceptance.

Another part of promoting acceptance, and thereby increasing uptake, is to provide insight into the drivers, barriers and needs influencing the energy behaviour of the end-user. The DSM Programme combines the knowledge of social sciences and technology to promote an energy efficient lifestyle.

Since achieving Energy Efficiency is complicated, the DSM Programme produces guidebooks, tools, databases and reports to make life less complicated.

The DSM University was recently established to help simplify the varying complexities of DSM through webinars and online materials. Check the DSM website for news and updates on this novel resource.

Efficiency requires management skill – Demand Side Management (DSM) skill.

Contact
Anne Bengtson
DSM Secretariat
IEA DSM Programme
Tel: +46 70 7818501
Email: anne.bengtson@telia.com
www.ieadsm.org

This Programme is part of the IEA Technology Network.
How Energy Services Are Working To Support Energy Policy Targets

Avoiding energy consumption by increasing end-use efficiency is a highly effective way to meet the three key targets of energy policies: 1) security of supply, 2) affordable costs of energy services, and 3) environmental soundness. But what are the appropriate instruments to bring energy efficiency to the end-user? One of the most urgent energy policy and economic challenge is the search for suitable “tools” to achieve energy conservation potentials.

Energy Service (ES), also referred to as Energy Contracting or ESCO service, is a proven ‘delivery mechanism’ for implementing energy efficiency measures for lighting, HVAC and even building refurbishment. An ES takes over the technical and economical implementation risks and provides performance guarantees for the results. They also are well suited to implement renewable energy systems with measurable outputs.

Main Activities

To contribute to the future market development of Energy Services, Task 16 is working to:

- Continue the IEA DSM Energy Services Expert Platform.
- Support and follow-up on country specific national implementation activities to foster ESCo market development.
- Design, elaborate on and test competitive and innovative energy and demand response services and financing models and publish results.
- Use the the Task’s Energy Service Expert Platform as a competence centre for international and national dissemination and assistance services (e.g., coaching and training) in the field of energy efficiency services.
- Support and contribute to the DSM University.

Task Work

Phase III of this Task is structured into five Subtasks:

Subtask 13 – IEA DSM Energy Services Expert Platform

Subtask 14 – Think Tank

Subtask 15 – Demand Response Services Business Models

Subtask 16 – Coaching of National Implementation Activities

Subtask 17 – National and International Dissemination

The detailed work program of Task 16 is open to modifications to support additional interests of the participating countries.

Experts have defined and are working on national implementation activities specific to their country and markets. The Task results are being disseminated nationally and internationally.

Task Duration

Phase III: July 2012 to June 2015.
Expected Results

Participating countries will:

- Receive feedback, coaching and experience exchanges on country specific Energy Service market development activities.
- Gain know-how and build capacity on innovative and competitive energy services and financing models from the Think Tank.
- Participate in the IEA DSM Energy Services Expert Platform and communication with external stakeholders.
- Receive support from the Operating Agent on specific Energy Contracting issues.
- Actively participate in the international dissemination of competitive Energy Services and contribute to the IEA DSM University.
- Work to enlarge the market for energy services and develop business opportunities for national and international ESCOs and consultants.

Participating Countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>South Korea</td>
</tr>
<tr>
<td>Belgium</td>
<td>Sweden</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Switzerland</td>
</tr>
</tbody>
</table>

Former Task 16 participants

Austria (GEA), Belgium (Fedesco), Finland (Motiva), India (JEE/Tepco), Netherlands (Essent), and Spain (Red Eléctrica de España and Hitachi Consulting)

Operating Agent

Jan W. Bleyl

Energetic Solutions

Lendkai 29, 8020 Graz, Austria
or
Frankfurterstr. 12, 76344 Leopoldshafen, Germany

EnergeticSolutions@email.de

National Experts

Austria

Jan W. Bleyl

Energetic Solutions
EnergeticSolutions@email.de

Belgium

Lieven Vanstraelen

EnergInvest
Ivanstraalen@energinvest.be

Johan Coolen, Charles Bourgois

Factor4
johan.coolen@factor4.be, Charles-Henri.Bourgois@factor4.be

Netherlands

Ger Kempen

Escoplan
g.kempen@escoplan.nl

South Korea

Kim, Kil-Hwan; Jang, Hye-Bin

Korean Energy Management Corporation (KEMCO)
kimkh@kemco.or.kr, janghb@kemco.or.kr

Cho, Sung-Hwan

Jeonju University
shcho@jj.ac.kr

Sweden

Nathalie Adilipour, Fredrick Andersson

Swedish Energy Agency
Nathalie.Adilipour@energimyndigheten.se,
fredrick.andersson@energimyndigheten.se

Switzerland

Markus Bareit

Swiss Federal Office of Energy SFOE
markus.bareit@bfe.admin.ch

Energy Service Company (ESCO)

Supply (MWh) or savings (NWh) incl. function, performance + price guarantees

Client

Source: after [Bleyl 2009]

Figure 2. Components of service packages and outsourcing of interfaces and performance guarantees to an ESCO

Energy Services Working to Support Energy Policy Targets

The success of further increasing energy efficiency will play a vital role in coping with the challenges of our common energy future. Avoiding energy consumption by increasing end-use efficiency is a highly effective means to meet all three key targets of energy policies — security of supply, affordable costs of energy services, and environmental soundness.

Performance based Energy Services (ES), also referred to as Energy-Contracting or ESCO service, is a many times proven ‘deliver mechanism’ for implementing energy efficiency measures such as lighting, HVAC or building refurbishment. An ESCo takes over the technical and economical implementation risks and provides performance guarantees for the results. ES are also well suited to implement renewable energy systems with measurable outputs.

Task Objectives

To contribute to the future ES market development of energy services, Task 16 is working to:

1. continue the well established IEA DSM energy services expert platform,

2. support and follow up country specific national implementation activities (NIAs) in order to foster ESCo project and market development,

3. design, elaborate and test competitive and innovative energy and demand response services and financing models and publish them,

4. use the Task’s *Energy Service Expert Platform* as a competence centre for international and national dissemination and assistance services (e.g., coaching and training) in the field of energy efficiency services,

5. contribute to the “DSM University”.

Subtasks and Schedule

The work is structured as follows:

![Task 16 structure and work packages](image)

Figure 1: Task 16 structure and work packages
Subtask 19: IEA DSM energy services expert platform

Subtask 20: Innovative and competitive energy services Think Tank

Subtask 21: National implementation activities (NIAs)

Subtask 22: Demand Response services business models

Subtask 23: National and International dissemination

The detailed work program of Task 16 will be developed to suit the needs of the participating countries. Specific national implementation activities are defined according to the individual country and market situations. Ongoing activities can be integrated into the NIA’s.

Task 16 has started operation in July 2006 and is currently preparing a three-year extension from July 2015 to June 2018 (Phase IV).

Expected Results

Participating countries will benefit from:

✓ Feedback, coaching and experience exchange for country specific market development activities (NIA’s)
✓ Gaining know-how and building capacity on innovative energy services and financing models from the Think Tank
✓ Demanding the OA to prepare selected Energy-Contracting issues of interest
✓ Participating in the IEA DSM Energy Services Expert Platform and communication with external stakeholders
✓ Task 16 will play an active role in the national and international dissemination of competitive ES and offer assistance services for the market development in other countries
✓ Contributing to the IEA ‘DSM University’

And last but not least: Enlarging the market for energy services and developing business opportunities for nationally and internationally acting ESCOs and consultants.

![Figure 2: Components of service packages and outsourcing of interfaces and performance guarantees to an ESCo](image)

Resources: Cost + Task Sharing

Cost sharing: 14,500 EUR/a,
Task sharing: 0,5 – 1 person month/a over a period of three years.

Task 16 Participants (Phases I-III)

Austria: GEA, Energetic Solutions; **Belgium**: Fedesco, energinvest, Factor4; **Finland**: Motiva; **India**: BEE; **Japan**: JFS/Tepco; **Korea**: Korean Energy Management Corporation, Jeonju University; **Netherlands**: Essent, escoplan; **Spain**: Red Eléctrica de España, Hitachi Consulting; **Sweden**: Swedish Energy Agency, **Switzerland**: Swiss Federal Office of Energy SFOE

Contact and Operating Agent

Jan W. Bleyl - Energetic Solutions
Lendkai 29 8020 Graz, Austria or Frankfurterstr. 12, 76344 Leopoldshafen Germany, EnergeticSolutions@email.de Tel. +43 650 7992820
Why Integration Is Needed
Renewable Energies are difficult to predict because of their volatility. Electrical networks and market are turning to integrated distributed energy resource as a solution. By combining distributed generation with energy storage and demand response, a country can decrease problems caused by distributed generation and increase the value of intermittent energy in the market.

House and building energy management system can enable the flexibility, which is needed to integrate renewable energy resources. Current activities concentrate on technical standardisation and harmonisation of systems. The continuation of Task 17 will concentrate on the impact of such flexibility on various stakeholders and focuses on the lessons learned by evaluating the benefits and costs of existing pilot projects.

Main Activities
The main objective of this Task is to study how to optimally integrate flexible demand with Distributed Generation, Energy Storages and Smart Grids, thereby increasing the value of Demand Response and Distributed Generation and decreasing the problems caused by intermittent distributed generation. The Task will look at integration issues from the system point of view on the grid, market and customer.

Subtasks
Phase 3 of DSM Task 17 is addressing the current role and potential of flexible buildings (residential and commercials) equipped with Distributed Energy Resources - DER (Electric Vehicles, Photovoltaic, electric storage, heat pumps) and their impacts on the grid and markets. The scalability and applicability of conducted and on-going projects with respect to specific regional differences and requirements are being explored.
Subtask 10: Potentials of Flexible Prosumers
This Subtask will compile and evaluate the concepts and implementation of customer and home/building energy management systems (CEMS/HEMS):
- Controllability requirements
- Opportunities, challenges and barriers
- Energy and power balancing potentials
- Smart technologies: Smart Meter, CEMS, Virtual Power Plants, distributed generation and electrical storage, heat pumps
- Impact of these developments on existing metering, trade and billing processes

Subtask 11: Impact on Stakeholder
The introduction of DER into competitive energy markets has unexpected effects. Information from various sources will be analysed and a framework and methodology will be developed to access the impact on:
- Grid, market and prosumer operations
- Sharing common benefits/losses
- Societal optimization potential
- Regulatory and legislative requirements
- Comparison costs vs. delayed investments

Subtask 12 - Sharing Experiences
Based on the collected pilots and case studies from the previous Subtasks the results and findings of the finished projects in terms of successful implementations, barriers and effectiveness will be analysed:
- Collection of data and Workshops
- Extrapolation from previously collected projects and applicability

Subtask 13: Conclusion and Recommendations
Recommendations will be based on the experts’ opinion and will provide a ranking based on impacts, costs and likely future penetration.

Phase 3 Duration
January 2014 to December 2015.

Countries & Organizations Participating In Phase 3
Austria
Copper Alliance
Switzerland
New countries are welcome to join.

Operating Agents
Matthias Stifter René Kamphuis
AIT TNO
Austria Netherlands
Matthias.stifter@ait.ac.at rene.kamphuis@tno.nl
Why Brand EE?
The IEA DSM Programme believes that it is possible to reverse the fortunes of energy efficiency products and services through successful branding. The branding of energy efficiency products and services will increase their visibility and credibility.

This Task builds upon the results of *IEA DSM Task 7: Market Transformation*. While DSM Task 7 took the initial step towards developing a framework for market transformation, it is time to evolve a comprehensive framework that can be used by government and industry to develop the market for energy efficient products.

Main Activities
The main objective of the current work is to share best EE practices from around the globe.

Task Work
Subtask 5 — Identification of Best Practices in Branding EE
- Identify case studies and develop best practices in branding EE.
- Identify the role of institutional structures and government support in developing successful branding strategies.

Eight to nine case studies will serve as the data for a report on best practices in branding EE. A survey of successful branding of energy efficiency efforts in the participating countries as well as other countries has been undertaken.

Using the survey results, the Operating Agent will develop case studies for successful branding efforts that:
- highlight business enablers for branding, identify best practice in branding of energy efficiency,
- identify inter-linkages for different aspects of branding,
- identify role of institutional structures and government support in development of successful branding, and
- identify key lessons that may be adopted in the development of successful branding strategies.

Task Duration
December 2012 to September 2014

Participating Countries
France Spain India United States

Operating Agent
Mr. Balawant Joshi
ABPS Infrastructure Private Limited
703/704, The Avenue
Opp. the Leela Intl Airport Road
Andheri (East), Mumbai – 400 069, India
balawant.joshi@abpsinfra.com

Visit the DSM Task 20 webpage for more information at www.ieadsm.org.
What is the Relationship Between Consumers and Smart Grids?
The current pace of change within the electricity supply industry is unprecedented. The wide ranging measures being implemented to reduce the emissions of greenhouse gas emissions, particularly the wide-scale deployment of time variable renewable generation, presents a number of challenges in relation to the balance of supply and demand. No longer is it considered viable for electricity to be provided 'on demand' in response to the requirements of end-users. Rather, a coordinated approach is required whereby energy production and demand are integrated to ensure the use of renewables can be optimised while also minimising the use of fossil fired generation and network infrastructure investment. Such an approach is the essence of the Smart Grid concept.

Today, there is considerable focus on the technological aspects of delivering Smart Grids, however, little is understood of the extent to which consumers are willing to embrace new technologies and initiatives that enable their use of energy to be actively managed. There is a real risk that if customers do not adopt new approaches to the way that they consume electricity, Smart Grids may not be able to achieve their full potential.

Therefore this Task, led by EA Technology, is investigating the role of consumers in delivering effective Smart Grids.

Main Activities - Objective and Scope
The main objective of this Task is to identify, and where possible, quantify the risks and rewards associated with Smart Grids from the perspective of the consumer, both now and in the future.

The project seeks to develop best practice guidelines in order to ensure the demand side contributes to the delivery of effective Smart Grids.

Task Work
This Task is exploring the potential risks and rewards associated with Smart Grids from the perspective of customers. Participants are collecting international experiences and identifying best practices to ensure that the demand side becomes an integral component of a successful Smart Grid.

The focus is on the interaction of policies, technologies and tools with customers and the impact of these interactions on the effectiveness of Smart Grids, as illustrated below.

To achieve the objectives, the Task is divided into 5 areas:

Subtask I - Impact of Energy Markets on the Role of Customers
This subtask is mapping the interactions of different stakeholders in a ‘market map’ for each participating country, with the consumer as the central focus. This could include power and information flows and responsibility (e.g., for billing and metering).

Subtask II - Interaction Between Technology and Customers
This subtask is drawing upon the available

Learn more about DSM Task 23 at www.ieadsm.org.
information on Smart Grid enabling technologies in order to consider the appropriateness of these technologies, both from the customer perspective and the Smart Grid industry perspective.

Subtask III - Identification of Risks and Rewards Associated with Smart Grids
This subtask is identifying the possible risks and rewards related to the Smart Grid concept from the consumer perspective. Each of these risks and rewards are influenced by a number of stakeholders for which the Smart Grid can meet specific needs and requirements.

Subtask IV - Designing Offers and Programmes (Tools) to Help Ensure Smart Grids Meet the Needs of Customers
This subtask is drawing upon the work already undertaken in this area, and focusing on the costs and benefits associated with different approaches that have been adopted. For example, the benefits of mandating vs. the ability to opt-in to a program and the trade off between the level of functionality included within smart meters as standards against the risks and rewards for customers.

Subtask V - Ensuring Customers Actively Engage with Smart Grids - Synthesis and Dissemination of Findings
This subtask is working to understand how the findings of Subtasks 1 to 4 come together, and will disseminate the results via a series of regional workshops organised and delivered by the Task participants.

Task Duration
June 2012 to May 2014.

Participating Countries
Netherlands, Norway, South Korea, Sweden, United Kingdom

Operating Agent
Linda Hull
EA Technology Ltd.
Capenhurst Technology Park,
Capenhurst,
Chester, CH1 6ES

Tel: +44 151 347 2336
Email: linda.hull@eatechnology.com

Outputs from the Project Will Enable Participants To...

- Understand the factors that influence customer reactions and attitudes towards Smart Grids.
- Gain an independent view of the risks & rewards of Smart Grids from the customers’ perspective.
- Understand how the needs of customers can be aligned with the needs of other industry stakeholders.
- Understand the importance of the demand side in ensuring the effective delivery of Smart Grids.
- Identify measures and tools to use to ensure customers are willing and able to contribute to the successful deployment of Smart Grids.
- Design customer propositions that allow and enhance the use of the “smartness” of a grid.
Task 24:
Closing the Loop - Behaviour Change in DSM: From Theory to Practice
Why Behaviour Change?

It is estimated that up to 30% of energy demand is locked in the so-called ‘behavioural wedge’. This ‘wedge’ includes peoples' energy-using habits, as well as their purchasing and investment decisions of energy (in)efficient technologies. The best ideas, policies, and programmes have repeatedly failed in achieving a lasting reduction of energy consumption. This ‘market failure’ of energy efficiency is often due to the vagaries of human behaviour and choice.

Even so, promoting energy saving behaviours is still not regarded as an imperative solution in the transition to a sustainable energy system. In fact, most policymakers see the energy system as consisting of two main components: energy (kWh or GW) and the technology that transforms the energy into the required service. What is usually ignored is the end user for whom the service is created and who needs to purchase, install, maintain and use the energy-using equipment correctly.

Most interventions geared at behaviour change also regard the end user as ‘Homo economicus’, rational beings who will selfishly maximise their utility at all cost. Thus, the interventions usually consist of financial incentives and information provision. The reasons why they invariably fail are manifold: Humans rarely behave economically rational, especially not in their energy use which is 90-95% habitual or routine behaviour. Behavioural approaches can address either the individual or the wider societal context. Both approaches have their pros and cons and neither are a so-called ‘silver bullet’ that will change all behaviours in all contexts. Behaviour change researchers from different disciplines don’t interact enough, and their research often fails to get translated into smarter policy making and programme design. In addition, it is extremely hard to evaluate ongoing behaviour change outcomes for meaningful, long-term success.

This Task sets to uncover, unravel and define these challenges, to break down inter-disciplinary silos, and to provide clear recommendations to our so-called ‘Behaviour Changers’ (in policy, research, industry, intermediaries and the third sector). Our goal is to develop a framework that clearly links behaviour change research theory to successful policy implementation and outcome evaluation. Ultimately, we want to show that large, ongoing changes in our energy-using behaviours are perfectly achievable and of crucial importance to meeting the world’s energy and climate targets.
Main Activities - Objectives and Scope

The main objective of this project is to create a global expert network and design a framework to allow Behaviour Changers to interact, share learnings and build up a common interdisciplinary and international knowledge base.

This should lead to better decision making around funding and designing DSM programmes and policies, and will include recommendations on how to monitor and evaluate ongoing success.

We will:
I. Create and enable an international expert network interacting with countries’ expert networks
II. Provide a helicopter overview of behaviour change models, frameworks, disciplines, contexts, monitoring and evaluation metrics
III. Provide detailed assessments of successful applications focussing on participating/sponsoring countries’ needs (smart meters, SMEs, transport, building retrofits)
IV. Create an internationally validated monitoring and evaluation template
V. Break down silos and enable mutual learning on how to turn good theory into best practice
What are some of the best features of Task 24?

This Task is quite unique both in its scope and in its approach:

• We translate relevant theoretical knowledge from various research disciplines to practice by engaging policymakers and practitioners.
• We engage our huge expert network to support our work in the various Subtasks - over 200 experts from 21 countries take part in Task 24.
• We bring together these highly experienced experts from every sector involved in changing energy-using behaviours (‘the Behaviour Changers’): research, government (local, regional, national, international), industry, intermediaries, and the third sector.
• We ‘matchmake’ Behaviour Changers from different sectors, countries and interests and help them find ways to collaborate, understand, support and learn from each other.
• We try to avoid interdisciplinary jargon and find a common language and definitions.
• We give them tailor-made recommendations of to do’s and not to do’s, based on their specific country, sector and domain of interest.
• We widely publicise our Task, the importance of better understanding behaviour (change) and the IEA DSM Implementing Agreement.
• We have a very wide scope, befitting the complexity of the topic - we look at case studies from transport, smart meter/feedback, building retrofit and SME domains.
• We ask the difficult questions, and try to find the best answers that fit our different Behaviour Changers’ specific needs and requirements.
• We develop creative ways of disseminating our work. We tell some great stories to illustrate the many examples where behaviour change approaches have worked - and where they have failed and why (see http://bit.ly/task24monster and http://bit.ly/Littlemonster).
Once upon a time... there was a great, big organisation that was delivering mail and parcels all over New Zealand, called New Zealand Post.

Every day... 100s of courier drivers were driving 13million kms every year to deliver these parcels to Kiwis.

But, one day... NZ Post realised that it was spending way too much money on fuel and that its drivers weren’t being as efficient as they could be.

Because of that... they decided to start a fuel efficient driver training programme, in order to teach their contractors to drive more efficiently (and safely).

But then... they realised that a lot of the drivers didn’t like being told what to do!

Because of that... they very cleverly used their most respected contractors to become trainers of the other drivers and made it all about being good business sense.

So, finally... They took them on test drives and showed them that they could save between 5-40% of their fuel just by changing simple behaviours.

And, ever since then... there was an overall, ongoing reduction in fuel consumption of 5% among the drivers that have taken part in the programme. The end.
Task Work

The Task is broken into 5 distinct subtasks, which follow a logical structure from 1) behavioural research theory, 2) DSM best practice, case studies and learnings, 3) ongoing outcome evaluation of actual changes in energy-using behaviours to 4) country-specific recommendations.

5 – Expert platform

1 – Helicopter overview of models, frameworks, contexts, case studies and

2 – In depth analysis in areas of greatest need

3 – Evaluation tool for stakeholders

4 – Country-specific project ideas, action plans and pilot projects

We have finalised the preliminary analysis of Subtask I and our ‘monster’ report and a short storybook version is available on the expert platform (to join: contact drsea@orcon.net.nz). We will continue to add case studies from countries that have joined after July 2013. We have started collecting in-depth case studies for Subtask II, this work will continue throughout 2014. Several expert workshops have started preliminary discussions on Subtask III. Subtasks IV and V are continually underway. We have several workshops planned every year. As this work is proving to be highly valuable, a 3-year extension of Task 24 until 2017 is already planned.

There is still time to join the Task or the expert platform.
The Task began in February 2012 and will end December 2014.

Participating countries:

Austria New Zealand
Belgium Italy
Netherlands South Africa (TBC)
Sweden In kind: UK
Switzerland In kind: UK
Norway

Operating Agents:

Dr. Sea Rotmann Dr. Ruth Mourik
43 Moa Point Road Eschweilerhof 57
6022 Wellington 5625 NN, Eindhoven
New Zealand The Netherlands
[Email addresses]

Task Website
www.ieadsm.org