Introduction by European Copper Institute

October 13, 2016
Hans De Keulenaer
Your hosts today

The Role of DSM to Provide Flexibility in Electricity Systems

October 13, 2016
Renaissance Brussels Hotel

Register at http://j.mp/IEADSM2016
2014 EU copper demand by product
+/- 3.8 million tonnes

- Alloy semis: 23%
- Copper semis: 8%
- Tubes: 10%
- Wire: 59%
The strong link between copper use and energy sustainability

- Energy conservation
- Energy efficiency, renewables, electrification
- Low efficiency, conventional generation
- Reliability, safety
Project
Copper in renewable electricity systems

Lithium batteries:
+ 0.6 kg Cu / kWh

Building automation:
+10%
Home automation:
+43%
Electric vehicles:
+28 kg
Heat pumps:
+8 kg

Wind & PV: up to 12 times more copper intensive

Efficient grids; interconnectors; subsea grid; …
(370 – 450 ktons Cu over next decade)
Project
DSM for RE integration - IndustRe

2012 ECI
Idea for wind powered industrial processes

April 2014 IFIEC & CEFIC
Workshop on DSM avenues in industry

May 2014 ECI
H2020 Project application on DSM for further RE integration

October 2014 ECI
Wins H2020 Project application for execution 2015-2018

January 2015
Kickoff of the IndustRe project
www.industre.eu
Since 2001, 70+ application notes in 10 themes
Tools for engineers to manage the energy transition
www.leonardo-energy.org/GPG
Update every 3 years
Power Quality & Energy Efficiency handbooks
Since 2005, 400+ webinars
Training for professionals to manage the energy transition
www.leonardo-energy.org/WEBINARS
150 webinars archived as 24/7 education library
Basis of e-learning program
http://j.mp/leonardotube
Overview of e-learning initiatives

DSM University

EU Energy & Climate Policy

Copper Academy

Transformer Academy

ISGAN Academy

Cable Academy

Power Quality Academy

Low Carbon Economy
ANNEX 8- ISGAN Academy

Update to
12th ISGAN Executive Committee Meeting
Paris, France October 12-14, 2016
Objectives

- The objectives of the ISGAN academy are to offer the ISGAN community of high level engineers and decision makers a means of rational and efficient continuous technical skills complement and update in the field of smart grids.

- Channel: e-learning platform
 - Topics: power system fundamentals to more specialised courses on breakthrough smart grids solutions
 - Structure information (public material) about recent developments, best practices, interesting methodologies, etc. on smart grids theory, application, deployment, events, etc.

- Program Committee:
 - draft the core structure of the e-learning platform
 - learning trajectory, existence and relation between modules, extent of the learning modules of the fundamentals, structure of the additional reading material etc.

- Leonardo Energy will provide the e-learning campus, will structure the e-learning architecture and will produce the webcasts based on material (ppt presentations) generated by ISGAN

- The e-learning units:
 - Recorded lectures: voice over a PPT slides
 - Lecturer will be provided by ISGAN (task share).
 - No direct teacher-student interaction is foreseen.
 - Blogs and communities can be implemented.
Theme 1. Fundamentals
- The structure of power systems: transmission and distribution
- The structure of power systems: generation and supply
- Regulatory economics, monopolistic activities: network businesses
- Regulatory economics, competitive activities: generation and retailing
- Introduction to smart grids
- Smart devices for smart grids
- Smart devices & technologies for distribution networks
- Communication systems in distribution networks: operation and control
- Communication systems in distribution networks: metering

Theme 2. Technical aspects: technologies, devices and system operation
- Integration of RES in power systems: transmission networks issues
- Integration of DER in distribution networks
- Electric mobility and the impact in power systems
- The role of storage in power systems and networks
- The active participation of demand: DSM
- Smart devices & technologies for transmission networks

Theme 3: Economics and regulation
- Tariff designs in the Smart grid context
- Cost and benefit analysis of smart grids functionalities
- Scalability and replicability of smart grids
- The use of reference network models
- Economics and business models
- Regulation of network activities
- Standards & interoperability
- Sustainability policies
- Social aspects and consumer involvement
- TSO-DSO coordination

Theme 4: International case studies and perspectives
- Jeju Island Smart Grid Project
- GRID4EU project, innovation for energy networks
- PRICE project, integrating Smart grids from two major distribution utilities in Spain
Today’s program

Session 1
Topics 1 & 2
Setting the scene

Session 2
Topics 3 & 4
Policy

Session 3
Topics 5-8
Demand response

Session 4
Topics 9-10
Integration

Session 5
Topics 11-12
Market design

Session 6
Topics 13
Conclusion
Thank you for your attention

For more information:
Hans.dekeulenaer@copperalliance.eu