Content

- Nordic Electricity market
 - Development of the Nordic Electricity system
 - Nord Pool market
 - Regulating power market (by TSOs)

- Demand response as TSOs` operating reserves

- Demand response potential in Nordic countries

- DR in large scale industries

- DR at electrically heated customers

- Development of automatic meter reading in Finland
Nordic countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Population million</th>
<th>Total area km²</th>
<th>Population density persons/km²</th>
<th>Capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denmark</td>
<td>5.4</td>
<td>43 094</td>
<td>120</td>
<td>Copenhagen</td>
</tr>
<tr>
<td>Finland</td>
<td>5.2</td>
<td>338 000</td>
<td>15</td>
<td>Helsinki</td>
</tr>
<tr>
<td>Norway</td>
<td>4.5</td>
<td>324 220</td>
<td>14</td>
<td>Oslo</td>
</tr>
<tr>
<td>Sweden</td>
<td>8.9</td>
<td>450 000</td>
<td>19</td>
<td>Stockholm</td>
</tr>
</tbody>
</table>
Deregulation Process in the Nordic countries

Norway
- Unbundling of Statnett and Statkraft
- All customers in competitive market without extra costs
- Unbundling of network businesses and sales on bookkeeping base
- Nordpool in Oslo
- Tight governmental control power plant licensing

1995, ->
Finland
- Unbundling of IVO / IVS, Fingrid in 1997
- In 1995 market opened for 500 kW+ customers, for all customers in 1997 (without extra costs in 1998)
- Unbundling of network businesses and sales on bookkeeping base
- National power exchange EL-EX, integration into NordPool in 1997
- Liberal licensing policy

1996, ->
Sweden
- Unbundling of Vattenfall / Svenska Kraftnät
- Market open for all customers (hourly meters required in the beginning)
- Unbundling of network and sales businesses into separate companies
- NordPool

1998, ->
Denmark
- Unbundling of two system operators ELSAM / ELTRA merged into one stateowned company in 2005, Energinet.dk
- Full competition in 2003
- Special support for renewables (wind), CHP, energy savings
Generation in the Nordic Countries 2005

- Hydro power: 57%
- Wind and geothermal power: 18%
- Nuclear power: 23%
- Thermal power: 2%

- Total generation: 404 TWh
- Hydro power: 68 TWh (57%)
- Nuclear power: 138 TWh (23%)
- Thermal power: 155 TWh (38%)
- Wind and geothermal power: 34 TWh (8%)

- Iceland: 9 TWh (19%)
- Norway: 138 TWh (99%)
- Sweden: 155 TWh (81%)
- Denmark: 34 TWh (81%)

- Source: Nordel
Electricity Consumption 2005

- Housing: 85 TWh (29%)
- Industry (incl. energy sector): 122 TWh (41%)
- Trade and Services: 145 TWh (40%)
- Other (incl. agriculture): 36 TWh (18%)
- Network losses: 8 TWh (27%)

Total: 396 TWh
Exchange of Electricity in the Nordic Countries in 2005, GWh

<table>
<thead>
<tr>
<th>Country</th>
<th>Imports GWh</th>
<th>Exports GWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denmark</td>
<td>12 998</td>
<td>11 623</td>
</tr>
<tr>
<td>Finland</td>
<td>18 669</td>
<td>1 525</td>
</tr>
<tr>
<td>Norway</td>
<td>3 652</td>
<td>15 692</td>
</tr>
<tr>
<td>Sweden</td>
<td>14 575</td>
<td>21 972</td>
</tr>
<tr>
<td>Other countries</td>
<td>13 727</td>
<td>14 645</td>
</tr>
</tbody>
</table>
Physical trade of electricity

<table>
<thead>
<tr>
<th>Physical market</th>
<th>Specific hour</th>
<th>Balance settlement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nord Pool Market</td>
<td>ELSPOT 12-36h</td>
<td>TSO (Nordel) market</td>
</tr>
<tr>
<td></td>
<td>ELBAS 1-32h</td>
<td>Regulation pwr market</td>
</tr>
<tr>
<td>Bilateral transactions</td>
<td></td>
<td>Balance management</td>
</tr>
</tbody>
</table>

Fixed transactions must be agreed and reported before the specific hour
Common marketplace: Nord Pool

VOLUNTARY MARKET PLACE FOR ELECTRICITY

- Founded in 1993 in Norway
- Other countries joined later
- Owned mainly by system operators
- Not all electricity traded through NordPool, but it sets the market price
- Several types of products
 - Physical market (daily spot market on hourly bases (Elspot), Hourly market (Elbas)
 - Financial market (Futures and options, standard products until 3 years ahead)
 - OTC and bilateral market
Marginal costs in the Nordic system
Elspot Prices (Nord Pool)
(monthly average)

Source: Nord Pool
Nordic regulation power market

- TSOs specific balancing market => common nordic balancing management
- The Finnish regulation power market is part of the Nordic regulation power market.
- The synchronous area is regulated as a one system
Nordic regulation power market

- Up regulation bids
- Down regulation bids

Countries:
- Sweden
- Finland
- Norway
- Denmark
Pricing of balance power

- The pricing of balance power is founded on Nord Pool Spot price for Elspot price area Finland (Elspot FIN).
- The price of balance power changes on the basis of regulations carried out during the hour.
- A two-price system, i.e. separate prices are specified for the sales and purchase of balance power, is applied to the pricing of balance power.
- Purchase price of balance power = down-regulation price
- Sales price of balance power = up-regulation price
Pricing of balance power

- Each hour is specified to be either an up- or down-regulation hour based on the direction in which more regulations have been carried out, determined on the basis of the volume of energy.
- If the regulations in each direction have an equal volume, both the up-regulation and the down-regulation price is Elspot FIN.
- The prices are made available to the Balance Providers two hours after the specific hour.
Demand Response as TSOs` operating reserves
DR as TSOs´ operating reserves
(activation based on the need of ancillary services)

DR as fast active disturbance reserves

DR as frequency controlled disturbance reserves
– All TSOs (Energinet.dk, Fingrid, Statnett and SvK) have contracted some DR as disturbance reserves.

Reserves for regulating power market
– Fingrid and SvK have practically no DR bids in the regulating power market
– Statnett has RKOM contractors that bid to regulating power market
– Energinet.dk have contracted some volumes.

Capacity payments change the behaviour of market players.
Demand as a Resource in Statnett’s Regulating Capacity Options Market (RCOM) Regulating Capacity (Norway)

- **Successful participation from large industries:**
 - Predictable revenues
 - Acceptable technical requirements
 - Direct participants in Elspot
 - Large demand units (> 25 MW)

- **Evolution of demand side attitude:**
 - ”Process protection” => ”business opportunity”
 - Industries now also submit price flexible bids in Elspot
Finnish Demand Side Operational Reserves

- Fingrid has signed contracts with process industry's large customers on disconnectable loads:
 - Metal industry (steel works and furnaces)
 - Forest industry (groundwood plants and mechanical pulping plants)
 - Chemical industry (electrolyses)
- The unit size of disconnectable load varies between 15 - 60 MW
- The needed amount of disconnectable loads are contracted with a competitive bidding procedure on yearly bases
- Additional loads can be obtained from reserve owners on weekly basis
Demand response potential in Nordic countries
Estimated DR potential in Nordic countries

<table>
<thead>
<tr>
<th></th>
<th>Denmark</th>
<th>Finland</th>
<th>Norway</th>
<th>Sweden</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contracted by TSOs</td>
<td>25</td>
<td>365</td>
<td>1,300</td>
<td>385</td>
<td>2,075</td>
</tr>
<tr>
<td>Observed other response</td>
<td>20</td>
<td>140</td>
<td>800</td>
<td>700</td>
<td>1,660</td>
</tr>
<tr>
<td>Additional economic and</td>
<td>800</td>
<td>2,400</td>
<td>4,600</td>
<td>3,000</td>
<td>10,800</td>
</tr>
<tr>
<td>technical potential in the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>short and medium term</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A pessimistic estimate of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the total potential</td>
<td>At least 500</td>
<td>At least 2,500</td>
<td>At least 5,000</td>
<td>At least 4,000</td>
<td>At least 12,000</td>
</tr>
</tbody>
</table>

Source: The background survey "Demand Response in the Nordic Countries"

Main potential in large-scale industries and electric heating
DR in large scale industry
Annual Consumption in large Industries

- Forest/paper industry
- Metal industry
- Chemical industry
- Other industry

TWh

Finland
Norway
Sweden
Electricity use in Finnish industry

Year 2003
- Industry: 45 TWh
- Services and public: 14 TWh
- Households: 10 TWh
- Electric heating: 9 TWh
- Other: 7 TWh
- Total: 85 TWh
Technical potential of DR (1 280 MW) is about 9 % from the peak power of Finland (14 000 MW)
Effect of electricity price on activating Demand Response

<table>
<thead>
<tr>
<th>Price limit that activates the response</th>
<th>Response duration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>max 3 h</td>
</tr>
<tr>
<td>100 EUR/MWh</td>
<td></td>
</tr>
<tr>
<td>200 EUR/MWh</td>
<td>266 MW</td>
</tr>
<tr>
<td>300 EUR/MWh</td>
<td>1063 MW</td>
</tr>
<tr>
<td>500 EUR/MWh</td>
<td>1068 MW</td>
</tr>
<tr>
<td>1000 EUR/MWh</td>
<td>1169 MW</td>
</tr>
</tbody>
</table>

- Price limits and demand response are very sensitive to market fluctuations (product prices)
- Electricity costs in the companies vary from 6 % to 80 % of production costs
Example of DR in a chemical company

One day (7 of March 2005)

MAALI/SKUU 2005

- Demand
- Spot price
Conclusions

- Total DR potential in Finnish large-scale industry about 1 280 MW (9 % from the Finnish power demand peak)
- DR potential in pulp and paper industry 790 MW (62 %), in basic metal industry 330 MW (25 %) and in basic chemical industry 160 MW (13 %)
- Year 2005 880 MW from the potential is available for electricity market and 400 MW for disturbance reserve
- After the fifth nuclear power unit comes on line (year 2009) 480 MW is available for electricity market and 800 MW for disturbance reserve
- 300 EUR/MWh electricity price activates about 1060 MW DR for electricity markets
- Many barriers to participate on DR: integrated processes, too little storages, risk of equipment faults, opposition of production personnel, new market conditions
DR at electrically heated customers
Time of use tariffs are applied long time since the beginning of electric heating in Finland in the beginning of 1970s (with fixed charge depending on the fuse size)

Development of new technologies:
- efficient heat insulation of houses, triple windows, heat recovery from ventilation
- use of meters with 2 – 4 registers for different price zones
- domestic hot water production in night time (heat storage)
- switching off part of heating when sauna (8 – 12 kW) is switched on (to decrease fuse size)
- direct load control of heating loads by using ripple control or DLC (due to the high incentive in whole sale tariffs)
- development of new technical solutions for electric heating (actual heating systems and heating control systems inside the house)
Effect of pricing: Average load profiles of small customers with electric heating
Large share of customers have TOU-pricing

Load profiles of residential customers

- Red line: Residential without electric heating
- Blue line: Residential with electric heating

Hours

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Low price
High price
Low price
Effect of demand response of electric heating in Finland
Comparison: Time-of-use tariffs even out the load profile in Finland

Electricity consumption 7.1.2004 in p.u
(hour load per peak hour load)

Source: Nordpool
Effect of competition and unbundling on DR in electric heating in Finland

Unbundling of network business and retail business of distribution companies

- network tariffs usually still include TOU-structure, may have changes in the future
- retail pricing has different schemes depending on retailer (TOU still applied)
- no incentives for direct load control (disappeared)

New challenges of DR in electric heating in Finland

The potential based on TOU-pricing is already exploited. New ideas needed

Next steps:
- real-time pricing based on the spot-price
- automated meter reading with hourly bases
- new type of load control: selling loads back into the market (aggregators needed)?
The present status of demand response at small customers with electric heating in Finland

- DSOs installed many direct control systems for electrical heating loads before the electricity market was opened up to competition. These systems have not been used during the competitive electricity market, because of unbundling, need for new rules and business models, low electricity prices, short management time-horizon, ..

- Time of use tariffs are still commonly applied for electrically heated houses and cause significant balancing needs at the system level. (2-time or 3-time distribution and/or energy tariffs).

- Electrical heating has significant unused demand response potential, because the system costs have been too high. (about 600 000 electrically heated homes, also many summer houses are electrically heated.)

- Tariffs based on the spot market prices are available even to small customers, but still rarely used. For small customers demand response is still infeasible because of high system costs, especially costs of hourly metering. Also new electricity market legislation is a significant barrier.

- New innovative pricing structures are under discussion at retailes in all Nordic countries
Example: Spot market price based demand response project in Finland

- Field trials of demand response to spot market price based real-time tariffs, 2004-2006
- 5 electrically heated houses
- 5 electrically heated apartments in a row house
- bigger buildings connected in the district heating network, apartment buildings,
Example on high price day, 19.01.2006

Total price

Network tariff
Use of fireplace during January 15 - end of February 2006

- High price days
- Surface temperature of the fireplace

Use of fireplace during January 15 - end of February 2006

- High price days
- Surface temperature of the fireplace

Use of fireplace during January 15 - end of February 2006

- High price days
- Surface temperature of the fireplace
Development of automatic meter reading in Finland (questionnaire to network companies)

(AMR is seen as an essential part in development of DR for small customers)
The number of AMR small-scale customers and total amount of small-scale customers and proportion of AMR customers of total amount of customers [%]. (Answer was given by 28 companies, 70%)
Purchase and utilization of AMR

The number of companies annually, when companies have made or will make decisions of purchase of AMR. Answer was given by 27 companies.
Costs of AMR

Investment costs of AMR. (Answer was given by 19 companies, 60 %)

<table>
<thead>
<tr>
<th></th>
<th>Urban [€]</th>
<th>Rural [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>100–250</td>
<td>170–350</td>
</tr>
<tr>
<td>Average value</td>
<td>166</td>
<td>215</td>
</tr>
</tbody>
</table>

Operating costs of AMR

<table>
<thead>
<tr>
<th></th>
<th>Urban [€]</th>
<th>Rural [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0,5–50</td>
<td>5–50</td>
</tr>
<tr>
<td>Average value</td>
<td>12</td>
<td>16</td>
</tr>
</tbody>
</table>

**Price of AMR [€/piece], when the holding time is 15 years and interest rate is 5 %.

<table>
<thead>
<tr>
<th></th>
<th>Urban [€]</th>
<th>Rural [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>9–51</td>
<td>16–51</td>
</tr>
<tr>
<td>Average value</td>
<td>20</td>
<td>27</td>
</tr>
</tbody>
</table>
Thank You