What is Demand-Side Management (DSM)? In fact, it refers to all kinds of technological changes to the electrical system that originate from the demand side of the market. The purpose of DSM can be multifold, but large scale energy efficiency improvement is certainly a primary goal. IEA DSM structures its activities into two clusters, depending on the desired impact on the load curve of the energy system.

1. The **Flexibility Cluster** includes Tasks that aim to improve the shape of the load curve over short (minutes/hours/days) or longer (days/weeks/seasons) time periods. This will primarily increase the reliability and operability of the system, although it can also indirectly improve energy efficiency.

2. The **Energy Efficiency Cluster** includes Tasks that aim to lower demand levels or shift the load from one energy system to another. This cluster primarily targets energy efficiency improvement and the reduction of Greenhouse Gas emissions, although it can also improve the reliability and operability of the system.

The DSM University (DSMU) builds on 20 years of IEA DSM work and the experiences of its members. DSMU provides access to the knowledge developed by IEA DSM in a structured way. In addition, the University serves as a community for DSM practitioners.

The DSM University is active through monthly webinars (accessing the resources of the DSM University requires a one-time registration, which is free of charge).

You can also watch all DSMU webinars on YouTube without registration.

Upcoming Webinars

1. What job is EE hired to do? A look at the propositions and business models selling value instead of energy or efficiency (Ruth Mourik)
2. Simplified measurement & verification for energy savings – the Task 16 approach (Jan W. Bleyl)

Archived Webinars

1. ESCo market development: A role for Facilitators to play (Jan W. Bleyl)
2. ISGAN Annex 2 spotlight on demand management (Laura Marretta)
3. Using Demand-Side Management to support electricity grids (David Crossley)
4. Best practices in designing and implementing energy efficiency obligation schemes (David Crossley)
5. Impact evaluation of Energy Efficiency and DSM programmes (Harry Vreuls)
6. Managing variability, uncertainty and flexibility in power grids with high penetration of renewables (Lawrence Jones)
7. Customized, systemic, strategic – the way to succeed with energy efficiency in industry (Catherine Cooremans)
8. Taking Stock – 40 years of industrial energy audits (Peter Mallaburn)
9. Behavioural changes are necessary to get the full impact on energy efficiency. What works and what doesn’t (Ruth Mourik)
10. How to make the best technology even better, BAT becomes BAT+ (Hans Nilsson)
11. Capturing the multiple benefits of energy efficiency (Nina Campbell)
12. Consequences of learning curves for energy policy (Clas-Otto Wene)
13. “Do not take away their steering wheel!” How to achieve effective behavioural change in the transport and SME domain (Ruth Mourik)
14. Improving energy efficiency in SMEs – an interdisciplinary perspective (Patrik Thollander)
15. Smart grid implementation – how to engage consumers? (Yvonne Boerrakker)
16. Integrating renewables and enabling flexibility of households and buildings – results and experiences from successful projects (Matthias Stitfer)