“Puang Sanook” The 1st energy efficient community in Thailand

Puang Sanook is a village situated in Chiangmai, a northern province in Thailand. It is a small community, but is distinctive in that it was recently designated as the first energy efficient community in Thailand.

The Electricity Generating Authority of Thailand (EGAT) has been working on energy efficiency since 1997, and as part of this work is the Demand Side Management project. EGAT’s DSM project is responsible for encouraging and educating people on energy conservation, and is implemented along side the energy efficiency label programme, “Label No.5”. EGAT implements this project by motivating and educating with precise information for efficient energy consumption by using the “3As” strategy: 1) energy efficient electric appliances, 2) energy efficient architecture, and 3) energy efficient attitude. This article will mainly focus on number 3, energy efficient attitude, which EGAT is implementing by integrating into the learning.

Energy efficient community logo
(The style adapted from label no.5 – high efficiency label for appliances)

Note from the Chairman

Sharing What We Know

The Oxford Dictionaries has named “post-truth” the word of the year, which it defines as “Relating to or denoting circumstances in which objective facts are less influential in shaping public opinion than appeals to emotion and personal belief.” In this era of post-truth politics, climate change has been called a “hoax” and measures to fight it are made suspect.

The vehicle for this culture to thrive is social media where denial of facts is dressed up as “common sense” of the people. “The combination of populist movements with social media is often held responsible for post-truth politics” writes William Davies in the New York Times Opinion Pages. No longer do we focus to choose our representatives for governing our society; we want to be in the front row of our parliaments with our apps and decide “for ourselves” what we like.
process in schools. There are 414 Thai schools that are in EGAT’s green network. These schools are provided with a conceptual approach and program activities on electrical safety tips in daily life, reducing energy consumption, calculating carbon footprint, and living a low carbon life.

In 2016, EGAT launched a pilot project on the energy efficiency community. “In the past 18 years, we’ve worked on supporting energy and environmental saving education for children and teachers with the goal to create positive behavior in energy consumption. But this year, our plan is to expand the knowledge learned and the low carbon activities in the schools with the communities nearby,” says Jirasak Mantharngkul, Director of the Demand Side Management and Planning Division.

EGAT’s energy efficiency community pilot project is in cooperation with two other organizations, the YMCA for Northern Development Foundation and the Sanpatong Wittayakom School. Throughout the project, EGAT is supporting the knowledge transfer while the YMCA and the Sanpatong Wittayakom School are coordinating and participating in activities.

“A strong community” is the reason why Puang Sanook was chosen as the place to run the project. People are willing to join any activities that can help reduce their energy bills and save the environment. The project is divided in three phases: 1) a training program, 2) activities, and 3) a positive behavior as an outcome. In addition, the community must pass specific standards of an energy efficiency community: policy, energy, waste, pollution, learning center for alternative energy, activities, and positive behavior.

At the beginning of the project, EGAT and the YMCA planned and set up a training program for students and villagers. Then groups of students were assigned to collect electricity usage data for every house to use as a benchmark. Meanwhile, staff went to safety inspect the electrical systems in the houses as all electrical installations deteriorate with age and use. The staff also exchanged old light bulbs for LED bulbs to save more energy and gave advice on using their electrical equipment properly. The results of this project came out a month later,—every household could reduce their energy bills and their energy consumption by 785 kWh (kilowatt-hour) in total.

This successful pilot project is just the beginning. The community will be monitoring and evaluating the project. Also, EGAT plans to expand this project to other provinces. There is no doubt that energy efficiency communities will be increasing in number in the near future.

This article was contributed by EGAT. Specific information on Label No.5 can be found here.

“I must say that the success of this project came from the people in the community who recognize the benefits of saving energy and saving their money and from our partners who worked very hard together to build this effective energy saving community”

JIRASAK MANTHARNGKUL
Director, Demand Side Management and Planning Division

A Homeowner who participates in the programme and reduces their energy bills is given an award with the logo and their name.
An International Day for DSM

The IEA DSM Technology Collaboration Programme and the European Copper Institute gathered in Brussels along with many others to discuss “The Role of DSM to Provide Flexibility in Electricity Systems”. This one-day event focused on four topics areas – Policy Perspective, Demand Response, Integration, and Market Design.

The day began with welcomes from the hosts Jean-Marc Delporte of FOD economie, Rob Kool of the IEA DSM TCP and Hans De Keulenaer of the European Copper Institute. Edwin Haesen of Ecofys then presented the Flexibility Tracker, which as Haesen explains, “is a tool to measure a country’s progress in terms of flexibility, to foster understanding and set best practices”. So far, the tool has been used in five countries (Belgium, The Netherlands, Germany, Poland and Spain) and there are plans to expand its application to other countries within and outside Europe. The value of the tracker is that it monitors individual systems, identifies gaps, and establishes best practices. As Haesen concluded, “Through using the Flexibility Tracker we discovered that the role of demand and demand aggregation needs more clarity, particularly in the roles and responsibilities of suppliers and aggregators”.

Policy

The Policy Perspective session highlighted the European Commission’s policies to promote Demand Side Response with Mark van Stiphout from the EC’s DG Energy highlighting the Commission’s proposed new legislation on the electricity market, renewables, energy efficiency (also in buildings), and governance. The speaker noted how the decreasing cost of ICT would facilitate increased digitisation – and consequently increased DR – in the energy sector. “When a DR project is automated – so that people don’t have to respond – the demand flexibility achieved from households was much higher than expected” states van Stiphout, as demonstrated in the Dutch EC financed PowerMatching City project in Hoogkerk, where intelligent devices, such as smart washing machines, heat pumps, solar panels and micro-CHP’s were installed in 25 homes. The results showed that consumers can and will change their energy usage profile to benefit from lower energy prices even when local power is abundant. Network operators have a key role to play, as does good communication and data exchange with aggregators, TSOs and DSOs. In conclusion, he noted that the privacy and security concerns of consumers need to be taken into account; the EC is working on free flow of data, as this is crucial to the development of DR.

This session concluded with a presentation by Jans Hensmans, the Belgian coordinator of the Pentalateral Energy Forum. This Forum has a mandate to work on flexibility (Support Group SGIII), namely to identify options to make markets more flexible; increase efficiency of balancing arrangements; identify DR best practices and regulatory obstacles; ensure a level playing field for new players (e.g., aggregators); increase regional TSO cooperation; and assess the role of DSOs. Currently, intense discussions are being held with stakeholders on three major fields for regional cooperation—

continued on page 4
balancing, intraday, and the role of DR. The Forum has produced a DR Paper that points out the critical issues for flexibility in markets and networks and discusses the need for fair access for all players to the different markets. Hensmans notes, “One of the Pentalateral Forum’s main findings is that many barriers and obstacles to the development of DR still persist—we seek commitment to remove these barriers and allow DR to evolve further”.

Demand Response

This session opened with Renske Bouwknegt of Ideate and a Dutch expert in IEA DSM Task 25: Business Models for a More Effective Market Uptake of DSM Energy Services. Bouwknegt reported on the Task’s analysis of more than 50 business models in six European countries with the overall objective to answer the question “Why is it so hard to be successful in the energy market?” The researchers discovered that companies offering the same product can create and operate with completely different business models, depending on whether the focus of the company is on the product or the service. A service-oriented business model works through promoting capabilities, such as sensing user needs, conceptualizing, orchestrating and scaling. To apply these skills, a change of mindset is necessary, not just simple online tools and so a business may need to offer training or hire new staff. Bouwknegt noted that, “Entrepreneurs often struggle with the fragmented market because it hinders them from delivering value”. But in the work of DSM Task 25 movement can be seen where, says Bouwknegt, “Many entrepreneurs have redefined the business they are in and moved to a service orientation, resulting in greater uptake”.

The next speaker, Rocio Moya of Creara in Spain, discussed the promising business models for emerging energy applications (smart heat, electric vehicles, energy storage). Creara’s database of successful and emerging business models has helped to identify the main barriers and potential solutions to facilitate the implementation of business models. For smart heating, it was found that the diversity of available technologies generates a range of barriers that could be overcome by simplifying the market, increasing the awareness of the technology, and empowering clients to extract greater savings through ICT. She noted that, “Technological advances, mainly led by the ICT sector, are opening new business opportunities, and challenging companies to enhance their obsolete business models”. For electricity storage, the main barriers are regulatory due to the immaturity of the market, which could be solved by measures such as international standardization, while an increased focus on utility-scale storage could also be beneficial. For electric vehicles, most barriers are related to technology and the lack of international standardization and regulation.

Didier Halkin of ORES in Belgium discussed ways in which the aggregation of production and DSM could be part of the European energy transition as well as provide new opportunities for aggregators. Halkin described ORES’ work in Wallonia on balancing with medium voltage customers, something its been doing since 2014 via an aggregator or alone. Halkin then touched upon low voltage where DSOs in Belgium have done a lot of preparatory work to obtain correct solar production profiles. From 2018, the real solar production will be included in the allocation results, in collaboration with the TSO. Halkin concluded commenting that, “What is certain is that with low voltage there will be new sources of flexibility as well as new needs for flexibility”.

The last speaker on the topic of Demand Response was Michael Van Bossuyt of Febeliec, the Federation of Belgian Industrial Energy Consumers. Bossuyt made the important distinction between Demand Side Flexibility, DSF, (the capacity to change electricity usage by end use customers in response to market signals) and Demand Side Response (the ability to act upon DSF). He reminded the audience that, “The first objective of industry is to manufacture goods; it’s not to implement Demand Side Response”, and so to be successful DSF opportunities must be balanced with other objectives such as sustainability, energy efficiency and emissions efficiency with the primary goal of overall system efficiency. DSR can also offer a wide range of services to help with issues surrounding adequacy, balancing, and congestion. The overall goal of DR was also described, which is to lower the

continued on page 5
total cost of the system to the advantage of all users, by allowing the least costly and most (system) efficient solution to emerge.

INTEGRATION

Jef Verbeeck of EnergyVille in Belgium presented on behalf of IndustRE and outlined the objectives of the IndustRE project, which are to 1) formulate business models and develop tools to facilitate their adoption, 2) quantify the potential benefits for the power system, and 3) formulate policy recommendations. What this comes down to is moving away from the conventional approach of calculating a DR business case, which is a long, involved and complex process that is suitable only for specialised companies and moving to a simplified approach that is cost- and time-efficient and is accurate without requiring specific modelling and optimisation knowledge and tools. This methodology will be tested and refined (if needed) with case studies from six target countries.

Rene Kamphuis, of TNO in The Netherlands presented on behalf of IEA DSM Task 17: Integration of Demand Side Management, Energy Efficiency, Distributed Generation and Renewable Energy Sources. In IEA DSM Task 17, sources of end-user flexibility were considered – along with how to automate them – such as heat pumps, micro CHPs, EV chargers, wet appliances (e.g. washing machines), and domestic hot water. The savings potential of smart meters was calculated at 2-5%, which was less than estimated. Kamphuis emphasized that “When talking about end-user flexibility in a DR project, one of the important issues to consider is privacy protection and the regulation of data ownership”.

MARKET DESIGN

Andreas Tirez of CREG in Belgium reflected on the need for an improved market design. A Demand Response market model is needed, stated Tirez, because the customer has to own his own flexibility and to be able to valorise it on the market of choice. However, now the customer can only valorise it via his supplier or the TSO, both of which are not ideal for a variety of reasons. An alternative is a market model for consumers that uses a 15-minute smart meter. This interaction model is based on two components: a centralised data management model linked to the flexibility volumes and a bilateral financial compensation model between the FSP and supplier (at supply price or negotiated price). Tirez remarked that, “For the further development of renewables, flexibility is essential, and demand is one of the possible sources of flexibility, via generation or storage”.

Frauke Thies of SEDC (Smart Energy Demand Coalition) discussed the two sides of Demand Side Flexibility – Implicit and Explicit. Implicit Demand Side Flexibility is when the consumer adjusts to variable market price signals. Barriers confronting this DSF include access to real-time pricing, access to smart infrastructure, and the need for appropriate price signals. Explicit Demand Side Flexibility is when the consumer sells local flexibility via an aggregator, and the range of barriers to overcome are described in the SEDC report, Mapping Demand Response in Europe Today. Thies emphasized that “Markets need to be open for Demand Response, but in Europe only Finland, UK, Ireland, Belgium and France have open markets.”

“The first objective of industry is to manufacture goods; it’s not to implement Demand Side Response.”

MICHAEL VAN BOSSUYT
Febeliec

This article was contributed by the European Copper Institute. To view the presentations online visit click here.
The IEA DSM Programme is continuing its webinar series in 2017!

Hosted by Leonardo Energy, the webinars cover all topics under the umbrella of Demand Side Management and one is held almost every month.

2017 will start with a webinar on January 19 –

Mind Your Business: Towards a More User Centered Business Model

Renske Bouwknegt of IEA DSM Task 25 will talk about how many companies in the energy efficiency business start with a technological focus, even when they offer a service, but then after some time experience a stagnation in the uptake of their business. Bouwknegt will look at this issue through the work of IEA DSM Task 25 and the lessons of over a hundred business models in Energy Efficiency to provide some insights on how businesses can transition to become more user centered.

Join us for this 1-hour webinar on January 19 at 15.00 Central European Time.

To register click here.

2016 Webinars

All these can be watched on YouTube or the Leonardo Energy website. To view now simply click on the titles below that interest you.

The IEA Energy Efficiency Market report: What it means for DSM

Tyler Bryant
DECEMBER 2016

DSM for the 21st Century

Hans Nilsson
NOVEMBER 2016

Energy intensive industries: Energy efficiency policies and evaluations

Christian Stenqvist
OCTOBER 2016

Energy efficiency obligations: A toolkit for success

Edith Bayer & Eoin Lees
SEPTEMBER 2016

Energy efficiency: A strategy at the heart of the G20

Deidet Debusscher
JUNE 2016

Energy efficiency: A profit center for companies! A strategic and financial discussion of the multiple benefits of energy efficiency

Catherine Cooremans
MAY 2016

Energy savings and greenhouse gas emissions: International standards & harmonised savings calculations in practise

Harry Vreuls
APRIL 2016

Highlights of the ACEEE National Conference on Energy Efficiency as a Resource

Martin Kushier
MARCH 2016

Involving people in smart energy: A toolkit for utilities, project managers, energy agencies and city developers

Ludwig Karg
FEBRUARY 2016

A brief history of energy efficiency labelling

Benoit Lebot
JANUARY 2016
You don’t need to squint to see that the clean energy transition is quickly approaching. The silhouette of wind turbines and the solar panels installed on the neighbors’ roofs are no longer novel – they’re increasingly normal. Investment in renewable energy now makes up 70% of all power sector investment. Coal-fired electricity generation in China was down in 2015 while generation from low carbon technologies was up. Low prices pushed investment in upstream fossil fuels down by a quarter. So while moving toward low carbon energy supply is a critical action, it’s what you don’t see that’s had arguably the greatest impact to the global energy system.

Energy demand peaked in 2007 in OECD countries and demand has since stabilized at levels not seen in over a decade. In China, the annual growth in energy demand is the lowest it has been since 1999. Global energy intensity improved at a rate three times greater than the average over the past decade. These developments are conflicting with the idea that lower energy prices beget higher consumption. So what is going on?

Another “source” of energy has been working in the background to speed up the transition to a sustainable energy system. Analyses from the International Energy Agency (IEA) shows that improving energy efficiency is working to lower energy demand in major economies and to reduce GHG emissions. Efficiency saved the equivalent of 13% of final energy consumption in 2015 and was the primary factor explaining flattening energy demand in OECD countries. Huge efficiency gains in China over the last decade lowered coal consumption by 350 million tonnes in 2015. Put together, energy efficiency improvements across industrialised countries and China lowered emissions by 3 billion tonnes of CO2 in 2015.

How is this possible? While the year-over-year changes in efficiency may appear small, over time its impact can be truly significant. If the efficiency of our lights, appliances, buildings, vehicles and motors had not improved in OECD countries since 2000 we would have added the equivalent of another Japan’s worth of energy demand to the global energy system. Improving efficiency in China alone avoided adding another Germany to the global energy system.

That efficiency is improving is no accident. Investment in energy efficiency has significantly expanded over the past 15 years, but still 70% of global energy consumption is not subject to mandatory policies. The impact of the adoption of fuel standards, building codes, minimum energy performance and labelling programmes’ influence on the development of technologies, such as electrical vehicles and LEDs therefore cannot be neglected.

These findings from the IEA are crucial for the years to come and the development of policies around the world. Not only do we see the link between policies and technological development, we also see the link between policies and market transformation. Policies saw that investment in energy efficiency grew by 6% in 2015 even with declining energy prices and policies have been a key stimulus to grow the global energy efficiency services market to $24 billion in 2015.
So how may we improve our policies in a way that we both support a strengthening market for energy efficiency including the creation of new jobs and growth while reducing the energy sector’s emissions intensity? In spite of positive developments in some sectors, others are lagging behind. Efficiency policies on industry and freight will need to expand in most countries. Questions that we need to ask are:

- What specific interventions and incentives will have the greatest impact to improve energy productivity?

IEA’s Global Energy Efficiency Conference

To answer the questions above, the IEA organized in Paris the first global Energy Efficiency Conference. Representatives from governments, industry and other stakeholders from all around the world gathered in October for a full day event to exchange views and experiences on effective policies.

Invited by the host, IEA Executive Director, Dr. Fatih Birol, the Swedish Minister for Policy Coordination and Energy, Ibrahim Baylan, was there to share the Swedish Government’s view on the topic. One of his clearest messages was that decision-makers must focus as much on promoting efficiency as on increasing renewable supply.

To dig a little bit deeper into this discussion, Minister Baylan gathered a group of experts who were attending the conference to discuss how to promote markets for businesses and other actors that provide efficiency services. The very active and dynamic discussion led to the following conclusions, which are important to pass on the work that is ahead of us.

1. Policy makers need good recommendations from the research community and businesses to develop effective policies. Best practices and good examples of policy or business models that manage to drive demand for efficiency need to be highlighted and deployed further. The IEA DSM TCP’s support to the IEA is therefore important.

2. If energy efficiency is the first fuel, we have to fuel it first. It’s important to look at the governance of such as international institutions and the funding support to projects. We must ensure also that efficiency projects are well funded.

3. Capacity is crucial, and raising knowledge and skills in small companies and organizations is particularly important. Information to consumers about the true cost of products’ energy consumption is important to ensure a level playing field among manufacturers.

4. Leadership of decision-makers on setting clear efficiency objectives is important in both politics and organization’s energy management to create leverage and demand for efficiency.

5. Better data is needed to support policy and institutional development, not the least in emerging economies. Governments have a clear role to working to continuously improve data collection and quality.

6. Energy efficiency is not only about energy savings and for some consumers it’s not even their main concern. There are many benefits from energy efficiency measure – both on a macro and micro level. By optimizing the use of energy we also improve the economic productivity and stability in an economy or in an organization. Efficiency measures do also have many other economic as well as social benefits, which needs to be elaborated further.

Key contributors to the discussion were members of the IEA DSM Technology Collaboration Program. The Swedish Government is a strong supporter of the IEA and its TCPs as a vehicle of deploying knowledge and joint international efforts to support the clean energy transition. Therefore, for preparing the breakout

Continued on page 9

Market Report from page 7

Energy efficiency was over 220 billion dollars in 2015 and 2/3rds greater than investment in fossil fuel-fired power generation. Since 2000, the number of policies mandating minimum efficiency levels has grown substantially. The share of global energy consumption from the industries, buildings, products, and vehicles subject to mandatory standards has tripled since 2000. Meanwhile, the average efficiency level mandated by these policies has risen by a quarter. Take the global passenger vehicle market where 74% of new vehicle sales are now subject to minimum efficiency standards. These standards saved 2.5% of global oil consumption in 2015 - approximately the annual production of Brazil.

Unlike conventional oil and gas resources, energy efficiency is the one resource that all countries possess in abundance. This resource is at the fingertips of policy makers who can and should continue to broaden and strengthen policies. While efficiency gains to-date have been impressive, they are still far off from where we need to be. To achieve our goal to limit warming to 2 degrees, efficiency is a central action. IEA analysis shows that over one-third of all emissions reductions needed are achieved through energy efficiency by 2040. The upshot is that efficiency doesn’t just help us decarbonize, it works to satisfy all of our energy policy goals such as improving energy security, access, and affordability. It is the first fuel.

To read more download the free Energy Efficiency Market Report at www.iea.org/eemr16.
session, the Swedish government worked together with the IEA and representatives from DSM TCP to make sure the discussion would build on an existing dialogue with DSM.

Finally, energy efficiency is not difficult, it’s only complex and takes a lot of hard work. Therefore it’s very satisfactory to see all the engagement around the table from Benoit Lebot (IPEEC), Remy Kolessar (Swedish Energy Agency), Catherine Cooremans (Université de Genève), Lotta Bångens and Hans Nilsson (EEF), Philippine T’Serclaes (Schneider Electric), Juliana Cavalcanti (Effy Global Services), Johan Olsson (Regin), Julia Reinaud (European Climate Foundation) and Randal Bowie (Rockwool) and in general at the IEA conference. We encourage IEA DSM TCP to continue the good work on raising knowledge around how through policy decisions we may establish markets for efficiency, how business models may be developed, and how the multiple benefits of efficiency measures may be better integrated in the policy dialogue in the future.

This article was contributed by Per-Anders Widell, Deputy Director, Energy Division, Swedish Ministry of the Environment and Energy and Tyler Bryant, Energy Policy Analyst, IEA Paris. Tyler.BRYANT@iea.org

Task 17

New Reports on Integration of DSM Now Online

DSM Task 17: Integration of Demand Side Management, Energy Efficiency, Distributed Generation and Renewable Energy Sources has published four reports that give an in-depth analysis of the technological, socio-economic and end-user aspects of end-user flexibility.

The four reports described build on eight years of work in IEA DSM Task 17, and the focused work for the past year and a half on this specific issue. Optimal use of active end-user flexibility in electricity demand, supply or storage at the residential level is still in its infancy. But challenges to this type of DSM remain, including user acceptance issues, market design and regulation, grid and market operational constraints, technical issues with communication protocols and response automation, and as a result, the lack of appropriate sound business models.

Valuation Analysis of Residential Demand Side Flexibility
In this report, the changes and impacts on grid and market operation of optimally using demand flexibility are examined. It includes a comparison of cost/benefit analysis methodologies and “use cases” on how flexibility can be used from an actor and role analysis with some use case examples given. Coordination schemes and
future market design options are also analyzed. Finally, an extensive number of existing valuations of smart grid projects are assessed with a particular focus on residential electricity flexibility.

Best Practices and Lessons Learned
The third publication reports on the Task’s assessment of living labs and extensive field test experiments. Theoretical and realized end-user flexibilities are shown to differ considerably depending on the degree of automation and a country’s market and tariff structure. Due to the increasing level of penetration of the internet, the barriers to integrating Demand Response aggregating applications, such as the cost of ICT connectivity and lack of communication protocols and standards are gradually being overcome. Coordination mechanisms for a large number of devices have shown to be implementable, well received by endusers, and operational over several years in several pilot projects. Bottom-up decision-making combined with bidirectional communication mechanisms provide the most functionality and resilience to change.

ICT enabled aggregation mechanisms and the use of transactive energy schemes to better map the real-time role in the electricity grid were found to be the most promising.

Conclusion and Recommendations
To wrap up this work, the 4th report summarizes the general conclusions and recommendations for applying and implementing demand flexibility to increase the penetration of DG-RES, DR and storage in electricity grids.

In the current market design and regulatory context, the roles of the new stakeholders and participation of new actors, like prosumers, are not reflected or are even blocked so improving market access for end-customers and better mapping of tariffs to the actual impact on grid components are recommended.

DSM Task 17’s Phase 3 may be over, but there is still work to do so experts are now preparing Phase 4 on “Flexibility in Active Prosumer Networks” (its working title). This phase will examine the required demand for electricity flexibility in distribution networks due to the further electrification of energy networks. It will also assess the expected increase in implicit and explicit flexibility aggregation in community based energy networks. And of course, the Task will take a multi-disciplinary approach by integrating the user behavior perspective.

For more information visit the IEA DSM Task 17 webpage, or contact the Operating Agents Matthias Stifter, matthias.stifter@ait.ac.at and Rene Kamphuis rene.kamphuis@tno.nl
More referenda and fewer coherencies seem to be the way forward. Based on this trend, we’ll see ourselves confronted with promises and decisions that are counterproductive to achieving our climate goals. Opening coal mines again and going back to more fossil is a campaign promise that might be as fast broken as it was made, but there are more, including decisions that will influence DSM.

The European Ecodesign and Energy Labelling directives have been the biggest successes for energy efficiency in Europe. Consumers like them, as they mean good product choices and saves money; researchers and technologist like them, as they offer huge opportunities to improve existing appliances; and the private sector likes them, as they create a level playing field for all.

Lately, we have witnessed a populist movement that wants less EU legislation/interference, of which Brexit is a “remarkable” example. And there are other “dislikes”, for example when it comes to certain product groups. Our lives will be miserable from now on, some populists claim, if we can’t replace, for example, our own vacuum cleaner, hairdryer or toaster with an exact copy of the old one when it breaks down.

And so for the moment, a strong update of both directives in light of the EU Energy Union is on the table.

The DSM TCP is working globally, so we are quite aware of other strong programs that stimulate more efficient appliances, like Japan’s Top Runner, India’s BEE and the US’s Energy Star labelling programmes.

As we head towards the integration of our energy consuming equipment into smart nets and smart cities, up to a level that is sometimes hard to imagine and understand right now, we need to continue and to strengthen programmes on a global scale right here and right now.

I hope the “dislikes”, “likes” and tweets will not slow down or stop this exciting process because the populists have for now run away with the topic.

Rob Kool
IEA DSM Chairman