Energy Content & Combustion Behaviour of Loose Biomass Available in Limpopo

Reuben M. Shuma

Supervisor: Daniel M. Madyira

Co-Supervisor: Gert A. Ooisthuizen

DUE 2015

CONTENTS

- 1. BACKGROUND
- 2. RESEARCH AIMS
- 3. MOTIVATION
- 4. EXPERIMENTAL PROGRAM
- 5. RESULTS
- 6. CONCLUSIONS
- 7. GOING FORWARD

BACKGROUND

- Biomass is major source of energy for rural communities
- 80% of energy needs in Sub-Saharan Africa supplied by

round wood

Unfortunately this leads to 0.7% annual deforestation

- Millions of tonnes of loose biomass produced annually
 - Agricultural waste
 - Forestry residual
- Destroyed in perennial veld fires
- Not usable due to low energy density
- Need to find way to harness this energy

RESEARCH AIMS

- ✓ To investigate the energy content, combustion behaviour & emissions of loose biomass
- ✓ Identify suitable briquetting candidates
- ✓ Investigate the energy content, combustion behaviour & emissions of briquetted biomass

MOTIVATION

- Reduce challenges of deforestation
- Reduce reliance on round wood as a source of energy
- Increase use of agricultural and forestry residues
- Improve combustion and emissions behaviour
- Success will improve the availability, reliability of sustainable energy sources especially in off grid communities.

EXPERIMENTAL PROGRAM

General Procedure

- 1) Specimens collection
- 2) Shredding
- 3) Weighing
- 4) Density measurement
- 5) Drying
- 6) Moisture content measurement
- 7) Calorific values tests
- 8) Combustion behaviour tests

EXPERIMENTAL PROGRAM

Combustion Behaviour Measurements

- Tests conducted at SeTar
- Used Imbawula Stove
- Monitored parameters include:
 - Exhaust temperatures
 - Exhaust gases
 - Mass decay rate

Dry Sample Calorific Values

LOOSE BIOMASS	CV (J/kg)
Sugar Cane Leaves	16.38
Mopani Bark	16.37
Mopani Leaves	18.81
Ground Nut Shells	20.31
Ground Nut Leaves and Stem	17.23
Yellow Thatching Grass	16.73
Coconut Shell	18.31
Eucalyptus Saw Dust	19.97
Cow Dung	12.87
Mealie Cobs	17.5
Maize Leaves	15.58
Maize Stalk	14.62
Coconut Skin	16.55
Walnut Shells	18.58
Sweet Sorghum Seeds	16

Combustion Performance: Cow Dung

JOHANNESBURG

Combustion Performance: Eucalyptus

JOHANNESBURG

Combustion Performance

BIOMASS PRODUCT	DENSITY	MOISTURE CONT.	TIME	RATE
	(kg/m^3)	(%)	(sec)	(g/sec)
Sugar Cane leaves	0.017	19.2	89	2.44
Mopani Barks	0.055	14.8	72	2.71
Mopani Leaves	0.045	10.7	72	2.71
Ground Nut Shell	0.018	3.3	305	2.68
Ground Nut Leaves and Stem	0.062	3.3	84	3.3
Yellow Thatching Grass	0.023	2	129	1.51
Coconut Shell & Skin	0.075	10.7	126	2.43
Eucalypthus Saw Dust	0.977	6.9	254	0.54
Cow Dung	0.038	10.7	316	0.59
Mealie Cob	0.14	10.7	112	3.19
Mealie Leaves	0.015	6.9	105	0.71
Maize Stalk	0.2	6.9	93	2.8

Calorific Value & Burn Rate

Selecting Briquetting Candidates

Good briquetting candidates require:

- 1. High calorific value (energy content)
- 2. Low density for compaction
- 3. Low burn rate for cooking

Selecting Briquetting Candidates

Selection metric = $\frac{Calorific \, Value}{Burn \, Rate \times Density}$

CONCLUSIONS

- Performance of the selected loose biomass was characterised based on energy content, density, moisture content and burning rate
- A special selection metric was used to select potential candidate materials for briquetting in that region
- The final choice of brequetting materials can also be influenced by other factors such as availability of materials, briquetting process chosen

CONCLUSIONS

- Mealie leaves, Cow dung, yellow thatching grass, sugar cane leaves and maize leaves demonstrated good potential based on the selection metric
- Materials such as mopani leaves and eucalyptus
 saw dust can be considered based on availability

GOING FORWARD

- Further work will be required to produce the biomass briquettes using the selected stock materials and test their performance
- 2. Health impact assement from emmisions and the characterisation of the gases emitted by all potential loose biomass materials must be investigated to ensure that they are safe to use

THANK YOU

