Codes, Standards, Efficiency, and DR – One Big Happy Family, or Sibling Rivals?

PLMA Spring 2005 Conference
April 29, 2005
Steve Rosenstock, P.E.
Overview

- Thesis
- Federal Efficiency Trends
- Residential Sector
- Commercial Sector
- Lessons from PEPCO
- Other Issues
- Q&A
Thesis Statements

- Building Codes and Appliance Energy Efficiency Standards are designed to make residential and commercial facilities and equipment as efficient as possible, while maintaining necessary/proper conditions for space function, comfort, and productivity.
- Not demand responsive, efficient.
- The more efficient a facility is, the less demand response is available (except DG).
- Efficiency Upgrades ==> Less DR
Federal / National Trends

- Residential / Commercial Equipment Energy Efficiency Standards

- Recent rules and effective dates:
 - Room Air Conditioners, October 2000
 - Refrigerators and Freezers, July 2001
 - Commercial Gas & Electric heating and cooling equipment, lighting power densities, envelope, water heating, etc. (ASHRAE 90.1-1999), October 2001
 - DOE certification of ASHRAE 90.1-1999 July 2002
 - States have 2 years to upgrade building codes (EPACT)
Federal / National Trends

- More rules and effective dates:
 - Residential electric, gas, and oil-fired water heaters
 January 2004
 - Residential Clothes Washers, Tier 1, January 2004
 - Commercial Fluorescent Lamp Ballasts, April 2005
 - Residential split and packaged central heat pumps
 and air conditioners, January 2006
 - Residential Clothes Washers, Tier 2, January 2007

- States create their own appliance efficiency standards (CA, MD, NJ, CT, CO)
Residential Sector

- Many technologies have been improving:
 - Lighting
 - Refrigerators and Freezers
 - Dishwashers
 - Clothes Washers
 - Cooking
 - Heating and Air Conditioning

- Meaning less DR potential…….
Residential Sector DR – Lighting

- Incandescent to Compact Fluorescent
 - 50-75% savings compared to incandescents, depending on the application.
 - Dimming CFL’s in torchieres

- Assumption: 20 sockets/fixtures and 2 torchieres in a “typical” house

- Old Connected load: \((20 \times 75 \text{ W}) + (2 \times 300) = 2,100 \text{ W}\)
- Old Typical load: 10% of Connected = 210 W

- New Connected load: \((20 \times 20 \text{ W}) + (2 \times 67) = 534 \text{ W}\)
- New Typical load: 10% of Connected = 53.4 W

Result: Lighting DR potential reduced by 74.6%
Residential Sector - Refrigeration

■ AHAM Refrigerator/Freezer data on size and annual energy usage (shipment weighted averages):
 – 1972: 18.16 Cubic Feet, 1,726 kWh (197.0 W/hr ave)
 – 1983: 20.31 Cubic Feet, 1,160 kWh (132.4 W/hr ave)
 – 2003: 22.28 Cubic Feet, **514 kWh** (58.7 W/hr ave)
 • 55.7% - 70.2% reduction in energy use, and DR potential
 • 31% of units sold in 2003 were Energy Star units

■ AHAM Freezer data
 – 1983: 25.32 Cubic Feet, 813 kWh (92.8 W/hr ave)
 – 2001: 20.93 Cubic Feet, **438 kWh** (50.0 W/hr ave)
 • 46.2% reduction in energy use, and DR potential
Residential Sector – Clothes Washers

◆ AHAM data:
 – 1988: 2.61 ft³ tub volume, 2.74 kWh / cycle
 – 2002: 2.96 ft³ tub volume, 2.13 kWh / cycle
 • 22.3% reduction in energy use and DR potential

◆ Impacts of New Innovations:
 – Horizontal Axis / Front loading Units (8.5% of the US market in 2001, 16.5% in 2004):
 • 35-45% less water
 • 45-55% less energy for washer and hot water
 – “Cold Water” Detergent
 • Use cold water for all loads, all the time
 • New water heater Clothes Washer demand: 0 kW
Residential Sector – Dishwashers

- **AHAM data:**
 - 1988: 2.71 kWh / cycle (2.71 kW if cycle = 1 hour)
 - 2002: 1.84 kWh / cycle (1.84 kW if cycle = 1 hour)
 - 32.1% reduction in energy use and DR potential

- **DOE test procedure data for efficiency standards:**
 - Late 1970’s: 416 cycles per year
 - 1984: 322 cycles per year
 - 1990’s: 264 cycles per year
 - 2003: 215 cycles per year
 - % chance of use for DR: from 114.0% to 58.9%
Residential Sector – Air Conditioning

- AHAM data for room air conditioners (750 hrs/year):
 - 1982: 10,801 Btu/hr, 1,135 kWh/yr, 7.14 EER
 - 1992: 10,100 Btu/hr, 853 kWh/yr, 8.88 EER
 - 2002: 9,800 Btu/hr, 754 kWh/yr, 9.75 EER
 - 33.6% reduction in annual energy use
- Peak demand at EER conditions (95°F outdoors):
 - 1982: 1.51 kW
 - 1992: 1.14 kW
 - 2002: 1.01 kW
 - 33.1% reduction in peak demand DR potential
Residential Sector – Air Conditioning
(continued)

- ARI/DOE data for central air conditioners:
 - 1978: 7.34 SEER (~ 6 EER) average efficiency
 - 1992 NAECA Std: 10 SEER (~ 8.5 EER)
 - 1997: 10.66 SEER AC, 11.0 SEER for heat pumps
 - 2003: 11.20 SEER AC, 11.5 SEER for heat pumps
 - 2006 Std: 13 SEER (~ 10.5 EER)

- For a 2.5-ton unit (30,000 Btu/hr), the peak demand at EER conditions (95° F outdoors):
 - 1978: 5.00 kW
 - 1992: 3.53 kW
 - 2006+: 2.86 kW

 • 42.8% reduction in peak demand DR potential
Residential Sector – Air Conditioning (continued)

- **Impacts of Innovations:**
 - New (proposed) Energy Star ratings: 14 SEER, 12 EER
 - 2.5 ton unit at EER conditions: **2.5 kW**
 - Lennox Air Source XC21 Unit: 20.5 SEER, 14.75 EER, sized from 2-5 tons
 - 2.5 ton unit at EER conditions: **2.04 kW**

- **GeoExchange (ground source heat pumps) systems.** Energy Star is 14.1 (closed loop) to 16.2 EER (open loop). ClimateMaster has new unit rated at 27 EER.
 - 2.5 ton unit, 17 EER at GS EER conditions: **1.76 kW**
 - 2.5 ton unit, 22 EER at GS EER conditions: **1.29 kW**
 - 2.5 ton unit, 27 EER at GS EER conditions: **1.11 kW**

- **More efficiency and less DR…..**
Lessons from consulting and facilities engineers:

“No one ever got sued for over-designing a heating or cooling systems (or ventilation or lighting….)”

“Your building is only as cool/warm as your warmest/coolest tenant”
 – Or your “most important tenant” (e.g, CEO, CFO, etc)

Result: Over-design = DR opportunities
1960’s / Early 1970’s: 3 Watts / square foot
100,000 sf office building: 300 kW (connected), 270 pk
T8 Lamps, CFL’s, Electronic Ballasts, etc

Late 1990’s: 1.0 Watts / square foot
100,000 sf office building: 100 kW (connected)
Mandates for motion sensors means lights already off where no one is using them (~ 70-85 kW peak load)

Result: > 70% reduction in peak demand and DR
Commercial Sector - Cooling

- 100,000 sf building using a 300 ton centrifugal chiller:
 - 1976: 0.90 kW / ton at peak load = \textbf{270 kW}
 - 1980: 0.75 kW / ton at peak load = \textbf{225 kW}
 - 1989 ASHRAE 90.1 Std: 0.68 kW / ton
 - 1993: 0.61 kW / ton at peak load = \textbf{183 kW}
 - 1999 ASHRAE Std: 0.58 kW / ton, 0.55 kW/ton IPLV
 - IPLV: Chiller “sweet spot of efficiency” at 70-80% of full load
 - 2002: 0.55 kW / ton at peak load = \textbf{165 kW}
 - 2002: 0.50 kW / ton at IPLV load = \textbf{150 kW}
100,000 sf building using a 300 ton centrifugal chiller:

More innovations:

2004 best chiller: 0.48 kW / ton at peak load, **144 kW**

2004 best chiller: 0.45 kW / ton at IPLV load, **135 kW**

- Variable Frequency/Speed Drives on Chillers (and cooling tower fans)
 - At IPLV, 0.38 kW / ton = **114 kW**

- DR result: From 270 to 114 kW, a 57.8% reduction in peak available DR load
Commercial Sector – Ventilation

- 100,000 sf building:
- Motor efficiency standards increased in 1997.
- NEMA “premium efficiency” motors are 40%+ of the market
- ASHRAE Std 90.1-2004: all motors ≥ 15.0 horsepower must have a variable frequency/speed drive
- Demand Control Ventilation: only move as much air as needed for the occupants
- → Less opportunity for DR
Commercial Sector – Office Equipment

- Fax Machines
- Copiers
- Printers
- Computers and Monitors
- Scanners
- Multi-function Devices

- According to EPA (and LBNL) studies, Energy Star rated devices had market shares of 70% (scanners) to over 90% (all others) in 2003.
Lessons From PEPCO

- PEPCO is the electric distribution company serving Washington DC and the majority of two surrounding counties (Montgomery and Prince Georges) in Maryland.
- 1985 Peak Demand: ~ 4600 MW
- Commercial DR started in 1985 (50 MW by 1987)
- Residential DR started in 1988-1989 (100 MW by 1990)
- 1990 Peak Demand: 5442 MW
- 1991 Peak Demand: 5769 MW (with use of DR)
- 2004 Peak Demand = ???
PEPCO Lessons

- 1992: NAECA standards go into effect for appliances, ASHRAE 90.1-1989 is published for commercial buildings
- 1997: EPACT standards go into effect
- 1999: Restructuring in MD and DC
- DR programs used on peak days (changes in 2001)

Index 1980 =100

- Total Energy Use
- Real GDP
- Electricity Use

Sources: Energy Information Administration (EIA) & Bureau of Economic Analysis (BEA)
PEPCO Area Economy

- Montgomery County Population: 19.7% increase from 1990 to 2003
 - 48,927 homes built between 1990 and March 2000
- Prince Georges County Population: 15.5% increase from 1990 to 2003
 - 46,986 homes built between 1990 and March 2000
 - 7,246 homes built between 1990 and March 2000
- US GDP rose 46% between 1990 and 2003
- DC metro area GDP rose at a faster rate
PEPCO Lessons

- PEPCO peak demand in 2004?
- 1985: ~ 4600 MW
- 1990: 5,442 MW
- 1991: 5,769 MW
PEPCO Lessons

- PEPCO peak demand in 2004?
- **6,086 MW** (and no DR), compared to
- 1990: 5,442 MW (11.8% higher)
- 1991: 5,769 MW (5.5% higher)

- Comparing 1991 to 2002 (blister to blister....)
- 2002: 6,364 MW (15 days > 94 F in Aug, 11 days > 94 F in July, ASHRAE 0.4% design day is 95 F)
- 10.3% increase over 12 years....
PEPCO Annual Peak Demands, 1990-2004 (MW)

Source: PEPCO Statistics March 2005
Average Annual Commercial Electric Use per Customer, 1975-2003 (kWh / yr)

Average Annual Electric Use per Total Ultimate Customer, 1975-2003 (kWh / yr)

Average Annual Electric Use per Total Ultimate Customer, 1975-2003 (kWh / yr)

Average Annual Residential Electric Use per Customer, 1975-2003 (kWh / yr)

- National IOU's
- California IOU's
- Linear (National IOU's)
- Linear (California IOU's)

Average Annual Residential Gas Consumption per Customer, 1975-2002 (Million Btus/yr)

Q & A

- The floor is open!