Project introduction

Frits van Oostvoorn
Adriaan van der Welle
Energy research Centre of the Netherlands, ECN

IEA DSM Agreement Workshop
9 July 2008, Petten
Project consortium 2007-2009
Objectives and main activities

Objective
- Identify, analyse and evaluate …”Economic efficient market-based Response options” to reduce the negative (increasing system costs) impacts of a strongly increasing penetration of intermittent RES-E and DG sources on the electricity system. This to meet EU RES targets for 2020;

Identify, analyse and assess…
- response options by market participants that support a more economic efficient integration of variable RES-E and DG in the electricity system.
- barriers and failures in market competition and present regulation that currently hinder these response options to be developed and implemented;
- policy and regulatory instruments & conditions to promote the application of these efficient response options by market parties in future.

Final results…
- A concise set of economic efficient policy responses and the policy & regulatory framework to facilitate its implementation by regulators & policy makers
- awareness among market parties, stakeholders & policy makers of these economic efficient market-based response options by workshops, articles etc
Project progress so far

Impact analysis of increasing intermittent RES-E and DG penetration
- Development of RES (intermittency) scenarios of the electricity system
- Impacts on generation, demand, trade and balancing system
- Impacts on transmission and distribution networks, respectively
- Crude overview of negative (increasing system costs) impacts

Identification and analysis of response options in generation, balancing/trade, networks and demand
- Response options in: generation, demand response and power trade
- Response options by: distribution and transmission system operators
- Reviews on relevance in several partner countries of these options

Assessment of barriers (current system conditions)
for implementation of these (market) response options → on-going now

Assessment of regulatory & policy measures/improvements
to implement response options → October08 till May09
Presentation of some results and findings regarding DSO & Demand side options

- Introduction of the background of increasing impacts by intermittent RES-E generation

- Overview of response options that would reduce the negative (system costs increasing) impacts

- Some conclusions

- **Main sources:**
 - Response options for generation, trade and demand by Henrik Jacobsen, Risoe
 - Response options for the DSO including DSM by Adriaan van der Welle, ECN
Drivers for DER (RES&DG) penetration

Greenhouse gas emission reduction
• **EU Kyoto target**: -8% reduction in 2008-2012 compared to 1990 emissions
• CO2 emission reduction in 2020: -20%

Renewable electricity
• 2010 target: 21% electricity demand in EU from renewable sources
• **2020 target**: share of RES 30-50% in electricity and 20% in total primary energy supply

Energy efficiency
• EU directive for **Combined Heat and Power** (CHP)
• EU Action Plan for Energy efficiency: 20% energy saving by 2020 compared to baseline

Enhancing supply security/ reducing fuel dependency

→ Via Support Schemes in Member States
National RES targets 2020 EU

Scenario of RES-E generation in the EU 27

The largest part additional RES generation by offshore and onshore wind (9%) and biomass (9%)

source: Dena
Electricity generation and installed capacities in the EU 27 for 2005 & 2015

- Wind contributes for largest part to the increase of RES.
- Onshore and offshore wind will become the dominant renewable energy source with a share of 43% of all installed RES capacities in 2015.

Source: Dena
Main negative impacts of large intermittent RES-E (wind, PV, micro-CHP) supply

- More variable, less predictable and controllable supply of electricity, particularly impacting markets, network operation of transmission and distribution networks, i.e.:
 - More price variation, higher balancing cost, lower capacity values, and lower revenues base load generators in markets
 - More demand for flexible and better predictable generation

- More expensive network operation through voltage rise, increased fault levels and higher variability direction of power flows, i.e. more energy losses etc
 - More demand for technical and economic options for improving network controllability, i.e. by more demand response
Lower spot market prices: results for 3 years

% lower spot price

2004 2005 2006

Source: Risoe
Poul Erik Morthorst

Denmark West
Denmark East
Total

Resi
Renewable Electricity Supply interactions with conventional POwe generation, Networks and Demand
Impact on Spot Price: DK example

Source: Poul Erik Morthorst, Risoe
Response options to increase network controllability

- Usual option of fit-and-forget way DSOs react to less predictable, more fluctuating and more diverse network load situations (upward flows) with a response→ network reinforcement.
- However, this way becomes an increasingly expensive way of network planning.

- Alternative options to increase network controllability of DSOs:
 - Active network management
 - Demand response
 - Micro-grids
 - Storage
 - Flexible deployment of DG
Active network management

Three phases of going to Active network management (ANM):
1. Real-time network control → i.e. monitoring transformers
2. Real-time control of demand and generation
3. Local system balancing, i.e. by micro-grids → see a next slide

- ANM means less investments in network reinforcement, but more in DSO activities such as communication, i.e. ICT tools and often higher energy losses

Institutional and regulatory measures:
- DSOs need to be indifferent between network reinforcement and ANM to further efficient network planning: move to incentive regulation instead of rate-of-return regulation
- Promotion of network innovation
- Real-time and locational network pricing to steer network flows
Demand response options

- Shifting energy demand from **peak to off-peak** demand lowers peak demand and consequently demand for network services

- Problem now: low price-elasticity of demand (non-visibility of real-time energy use and associated costs) for small customers
 - Implementation of **smart metering** is a precondition for more demand response

System advantages:
 1. Higher “network capacity usage rate” (higher overall system efficiency)
 2. Less network interruptions (higher security of supply)

But... higher data management costs of real-time metering and pricing

Institutional and regulatory changes:
- Introducing real-time, peak and day ahead pricing and further interruption contracts etc
Micro-grids

Definition micro-grids: LV network operating independent from MV and HV networks

Therefore:
1. higher security of supply in rural areas with a comparable amount of generation and load
2. lower costs than extension of network capacity by reinforcements

- Before implementation of local balancing and islanding earlier phases measures of ANM concept have to be implemented and black start has to be technically feasible

- Institutional and regulatory measures: especially real-time and locational pricing are necessary for better steering of network flows
Storage options

Application of the storage option in cases of:

- Electricity at times the network is constrained
- Increase of network reliability (provision of reactive power, protection and isolation for system faults)

→ network reinforcement can be postponed/avoided

Required institutional and regulatory measures:

- Time and location dependent network tariffs to account for contribution of storage to resolve network constraints
- Adjustment of network planning practices and concomitant investment incentives to promote trade-off between use of storage in network operation and additional network reinforcement
- Allow introduction of independent storage facility for several purposes including network aims both for economies of scale of storage facilities and to overcome unbundling provisions
More flexible deployment of generation

• Congestion management: diminishes power flows in congested areas and prevent a change in flow directions → saves network reinforcements

• System benefits:
 1. Higher “network usage capacity” (higher efficiency)
 2. Less network interruptions (higher security of supply)

• Required institutional and regulatory measures:
 - Density and location of entry point and specific network situation relevant for impact → time and locational network pricing is required
 - Avoided costs network operator have to be passed on partially as remuneration to down regulated distributed generators.
Applicability of DSO & Demand response options (i)

Criteria for feasibility in time:

• Feasibility in the short-term depends on:
 - technology is sufficiently proven
 - limited network investments needed
 - no change in the network operation philosophy necessary
 - no or limited regulatory adjustments required
 - limited participation of consumers in the solution required

• Feasibility in the longer-term depends on:
 - Cost-efficient monitoring and control network devices are available
 - ICT based communication systems to be able to deal with large amounts of data about network operation, generation and demand are put in place
 - Modest to complex changes in network regulation, i.e. use of system and locational tariff system charging of generation and demand
Applicability of DSO & Demand response options (ii)

<table>
<thead>
<tr>
<th>Option</th>
<th>Short term</th>
<th>Medium term</th>
<th>Long term</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANM (real-time network control)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANM (real-time production and demand control)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANM (local balancing and micro-grids)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More flexible deployment of DG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand response</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- Contribution of intermittent RES-E & DG will increase substantially in EU countries in next decades
- Need for timely development & implementation of market-based technical and economic response options in EU MS
- RESPOND identified many options for system segments, generation, trade, load balancing, networks and demand side. **Priority options** for DSO&DSM:
 - More monitoring and control of distribution network operation
 - More monitoring and control of DG and demand options for:
 1) More flexible deployment of DG at extreme peak supply of RES-E generators
 2) Demand response by real-time pricing etc
 - Further development/implementation of ANM concept for DSO
- **Deployment of storage** for DN and introduction of micro-grids will depend much more on specific system and network conditions per country/region
 → i.e. less wide-scale possibilities and higher costs for longer-term

- **NOTE:** Precise values of different options and avoided costs closely depends on characteristics of **national power & DN system**:
 - DG characteristics (concentration and location)
 - network characteristics
 - national policy and regulation
Project partners & Contact

Coordinator
Frits van Oostvoorn
Energy Research centre of the Netherlands (ECN), The Netherlands
E-mail: oostvoorn@ecn.nl
Telephone: +31 224 564438

Partners
Universidad Pontificia Comillas, Spain
Deutsche Energie-Agentur GmbH (dena), Germany
Imperial College of Science, Technology and Medicine, United Kingdom
Institut für Solare Energieversorgungstechnik e.V. (ISET), Germany
Red Eléctrica de España S.A., Spain
Forskningscenter Risø, Denmark

Project website: www.respond-project.eu