

**Business from technology** 

# Microgeneration and new end-use technologies in ADDRESS, INCA and SEESGEN-ICT

Jussi Ikäheimo (VTT) (& Regine Belhomme, Giovanni Valtorta) IEA DSM 17 workshop in Sophia Antipolis, France 18th May 2011



## **ADDRESS project**

(Active Distribution networks with full integration of Demand and distributed energy RESourceS)

- ADDRESS considers "active demand", flexible demand of power at consumer level, which may consist of both demand response and distributed generation
- Provides enabling technologies, algorithms and prototypes for
  - Iocal control or DER at consumer level
  - VPP control,
  - communication,
  - reliable grid operation
- Validate and assess the solutions developed with field tests in France, Italy and Spain



#### **ADDRESS conceptual architecture**



# **VIT**

## **Address conceptual architecture**

#### Aggregator

- Gathers consumers' flexibility to build Active Demand (AD) products
- Offers/sells them to the power system participants via markets and contracts



#### <u>Consumers</u>

- Households and small businesses directly connected to distribution network
- Provide demand flexibility
- Energy Management box (Ebox): gateway to the consumer
- Optimisation and control of appliances and DER
  <u>DSO</u>
- Ensures secure and efficient network operation when AD is present
- Can purchase services from aggregator

#### Markets and contracts

- All types of commercial relationships (organized markets, call for tenders, bilateral negotiations)
- Energy supply
- Balancing services
- Relief of overload & network congestion
- Ancillary services: steady state V control, reserves

# **VII**

### **Aggregator core modules**

Aggregators need to have the following key modules, to be implemented within the project following ADDRESS strategic approach:



- Consumption and flexibility forecasting: Forecast flexibility in the short and long term (this forecasting is tuned as feedback & consumer understanding is achieved).
- Market and consumer portfolio management.
  Consumers and other players contractual relationship, long term operations (strategy) and risk management.
- **Operational optimization:** Algorithms (short term) to interact with other players selling and activating demand flexibility.
- Markets short term price forecasting
- **Settlement and billing**: Assessing services delivery and performing billing.



## **Active demand products description**

Product description template:

- Availability interval
- Activation time
- Requested power curve or reserved power curve
- Price structure
- Ramping limits
- Location information



# **√∨***π*

# **Location information**



#### Load areas

- For service localization + technical validation needs for DSO
- Represent consumers "equivalent" from distribution network operation point of view
- Can encompass: part or whole LV lines, one or more MV/LV substations, MV feeders, busbars...

#### Macro Load Areas

 Similar concept as load areas but are aimed for the TSO needs (e.g. one or more HV/MV substations)

| Consumer ID (point of supply code) | Local Area Code | Macro Load Area code |
|------------------------------------|-----------------|----------------------|
| XXXXXXXXXXXX                       | уууууууу        | 2777777777           |
|                                    |                 |                      |



Information available for market players



## **ADDRESS** active demand services

- In the project 31 different AD services were identified, however some with only minor differences
- For deregulated players 24 AD services, which include
  - optimization of sales and purchase of electricity
  - reduction of imbalance costs
  - reserve service to fullfil obligations towards TSO
- For regulated players (DSO and TSO) 7 services including
  - voltage control
  - tertiary reserve
  - smart load reduction



## **Services for network companies**

| Player |     | Service type                     |                                                                                                       |  |
|--------|-----|----------------------------------|-------------------------------------------------------------------------------------------------------|--|
| DSO    | TSO | Gervice type                     | AD Gervice                                                                                            |  |
| Х      | Х   | Voltage regulation               | Scheduled Re-Profiling for Voltage Regulation<br>and Power Flow Control (slow) - SRP-VRPF-SL          |  |
| Х      | X   | control                          | Conditional Re-Profiling for Voltage Regulation<br>and Power Flow control (fast) - <b>CRP-VRPF-FT</b> |  |
|        | Х   | Tertiary Active<br>Power Control | Bi-directional Conditional Re-Profiling for Tertiary<br>Reserve (fast) - CRP-2-TR-FT                  |  |
|        | Х   |                                  | Bi-directional Conditional Re-Profiling for Tertiary<br>Reserve (slow) - CRP-2-TR-SL                  |  |
| Х      | Х   |                                  | Scheduled Re-Profiling Load Reduction (slow) - SRP-LR-SL                                              |  |
| Х      | Х   | Smart Load<br>Reduction          | Scheduled Re-Profiling Load Reduction (fast) - <b>SRP-LR-FT</b>                                       |  |
| Х      | Х   |                                  | Conditional Re-Profiling Load Reduction (fast) -<br>CRP-LR-FT                                         |  |



## **Generic stages of an AD service deployment**





#### Service deployment sequence diagram

#### SRP-SOPS-RET(Short-term Load shaping to optimise purchases and sales)





#### SRP-SOPS-RET(Short-term Load shaping to optimise p









## Finnish INCA (Interactive customer gateway)





## **INCA** services

| Main functions               | Information to and from<br>customer gateway | Task for the customer<br>gateway | Time<br>scale |
|------------------------------|---------------------------------------------|----------------------------------|---------------|
| TSO; Management of power     | Input: System frequency                     | Reduce loads/supply power        | s–min         |
| balance and reserve power    | measured in the gateway                     | to the grid based on the         |               |
|                              | Output: Estimate of                         | droop determined for the         |               |
|                              | available elasticity                        | gateway                          |               |
| DSO, supplier, aggregator;   | Input: Hourly grid powers                   | Keep the objectives for          | 1–168 h       |
| optimisation of system loads | determined by the market                    | hourly grid powers               |               |
| (determination of optimal    | player                                      |                                  |               |
| grid powers)                 | Input/output: Estimate of                   |                                  |               |
|                              | available elasticity                        |                                  |               |
|                              | Output: Estimate of grid                    |                                  |               |
|                              | powers within minimum and                   |                                  |               |
|                              | maximum limits                              |                                  |               |
| Customer; Minimisation of    | Input: Estimate of market                   | Optimise control for loads,      | 1–24 h        |
| total energy costs           | price                                       | energy storage and               |               |
|                              | Input: Distribution tariff                  | generation                       |               |
|                              | information (in case of                     |                                  |               |
|                              | dynamic tariffs)                            |                                  |               |



# Suggested measurements at the customer gateway

- Voltage quality
  - 10 min averages of THD up to the 40<sup>th</sup> harmonic for the previous year
  - times of THD exceeding 8 %
  - times of voltage dips
- Loss of mains situations
  - times for the previous year
- Power consumption
  - 3 min averages for the past week
  - I hour averages for the past year
- Available demand response (estimate)
  - 3 min averages for the past week
  - I hour averages for the past year
- Environmental variables
  - indoor & outdoor temperature



## **Contradicting goals of the grid and market**



Shift of loads and reduction of peak power from electricity sales perspective.

(Järventausta, Kaipia & Partanen 2010)



## Simulations of market-based demand response on intra-day market in INCA



# SEESGEN-ICT (Supporting energy efficiency in smart generation grids through ICT)

- A thematic network which has been running since summer 2009 and is now in its final stage
- Will produce a number of recommendations concerning e.g.
  - interoperability
  - Information security
  - information availability
  - energy efficiency of ICT
- Recommendations will be published in June on http://seesgen-ict.erse-web.it/

19





## Thank you