Power Distribution Automation Solution

Smart Grid Data Aggregation

Patrick Pipet
IEA/ADEME Workshop XVII
May 18th, 2011
The energy dilemma is here to stay

The facts

× 2
Energy demand
By 2050
Electricity by 2030

The need

÷ 2
CO₂ emissions to avoid dramatic climate changes by 2050

Source: IEA 2007

Source: IPCC 2007, figure (vs. 1990 level)

Frequent power outages
Rising energy prices
Climate change
Conflicts for resource access & control
How does Smart Grids impact Distribution networks?
As we move from traditional grids ...

Centralized generation

Top-down energy flow

Transmission

Distribution

Commercial and industrial

Residential

Supply/demand balance done by integrated utilities

Central production adapting to demand variation

Rather passive users

Homes

Industry

Building

Datacenter

As we move from traditional grids ...

Centralized generation

Top-down energy flow

Transmission

Distribution

Commercial and industrial

Residential

Supply/demand balance done by integrated utilities

Central production adapting to demand variation

Rather passive users

Homes

Industry

Building

Datacenter
...to Smart Grids

- **Transmission**
 - Centralized generation
 - Renewable energy plants > 1MW

- **Distribution**
 - Distributed and intermittent generation at all levels

- **Commercial and industrial**
 - Decentralized distributed generation <1MW

- **Residential**
 - Bi-directional flow of energy and...data!

- **Active users**
 - (willing to "visualize" and control their consumption, becoming producers, using EV...)

- **Bi-directional flow**
 - homes
 - industry
 - building
 - datacenter
The MV/LV Transformer Substation: A strategic point in distribution networks
Traditional grids have been focused on feeder automation ...

RTU+FPI (Traditional grid)

- Improving energy availability
 - MV fault location
 - Distribution network reconfiguration
 - MV distribution loop management

Benefits

- SAIDI/SAIFI optimization
... but as grids become smarter so must their feeder automation

Growing Distributed generation integration
- MV fault location with multi-direction Energy
- Energy Flow Monitoring
- Monitoring of the LV feeders

Energy demand management
- LV load management
- Transformer temperature overload

Focus
- Bi-directional energy flow
- Transformer monitoring
With AMM aggregation, MV/LV substations become communication hubs …

- AMM, Demand response
 - Meter Reading
 - Tariff management
 - Load management

Focus
- Demand Response
... capable of managing demand response and LV network distribution

Smart Feeder Automation: FPI & RTU + monitoring + Concentrator

- **SCADA/DMS**
- **SI AMM**
- **RTC**
- **GSM**
- **GPRS**
- **Internet**
- **WiMax**
- **COM (WAN)**

A single unit for Feeder automation and AMM

MV/LV substation

Power Line Carrier

Smart Meters

- **AMM**, Demand response
 - Meter Reading
 - Tariff management
 - Load management

Focus

- **LV Network distribution**
- **Demand Response**
Smart Meter data aggregation benefits
Out of the 10 applications, let’s take a look at some network operation benefits

1. New customer connection
2. Permanent fault
3. Transient default
4. Voltage management: over voltage
5. Voltage management: under voltage
6. Load management: unbalance currents
7. Non technical losses
8. Network disturbances: Harmonics, power factor …
9. Load shedding
10. Neutral cutout
New customer connection
New customer connection

- **Meter+Box deliverables:**
 - Customer identification
 - Contract
 - Loads & production
 - Outgoing & phase
 - Reflectometric data

- **KSFA deliverables:**
 - SLD updating
 - Data storage & transmission

- Meter connected?
 - On which feeder?
 - On which phase?
New customer connection

Benefits

- Real time update of network/customer topology

- Manage commercial data

- Manage drawings & technical data

Retailer

DNO
Out of the 10 applications, let’s take a look at some network operation benefits

1. New customer connection
2. Permanent fault
3. Transient default
4. Voltage management: over voltage
5. Voltage management: under voltage
6. Load management: unbalance currents
7. Non technical losses
8. Network disturbances: Harmonics, power factor …
9. Load shedding
10. Neutral cutout
Permanent fault

On which phase?
Where?
Permanent fault

- Meter + Box deliverables:
 - Answer to ping
 - Customer identifications
 - Contract
 - Loads & productions

- KSFA deliverables:
 - Scan the meters
 - Substation fault indication
 - Data storage
Permanent fault

- **Meter + Box deliverables:**
 - No answer to ping

- **KSFA deliverables:**
 - Scan the meters
 - Detects lack of communication
 - Substation fault indication
 - Data storage
 - Data transmission
Permanent fault

- Fault Localization
- Maintenance alarm
- Historic management

DNO
Permanent fault

Benefits
- Save time to repair (SAIDI improved)
- Real time update of data base

- Historic management
Retailer

- Historic management
DNO
Out of the 10 applications, let’s take a look at some network operation benefits

1. New customer connection
2. Permanent fault
3. Transient default
4. **Voltage management : over voltage**
5. Voltage management : under voltage
6. Load management : unbalance currents
7. Non technical losses
8. Network disturbances : Harmonics , power factor …
9. Load shedding
10. Neutral cutout
Voltage management
Over voltage

- Context
 - High local production
 - Low load level

Sunny & Windy spring afternoon

How to regulate the voltage?
Voltage management
Over voltage

• Meter + Box deliverables:
 • Detect over-voltage
 • Signal

• KSFA deliverables:
 • Receive & analyze
 • Load shedding decision
 • Production requirements:
 • kW vs. kVAR
 • disconnection
Voltage management
Over voltage

• Meter+ Box deliverables:
 • Manage load shaping

• KSFA deliverables:
 • Check results
 • Balance with next substations
Voltage management
Overflow voltage

Benefits
Improve quality index

- Historic management
- Retailer
- Historic management
- DNO
MV/LV substations are set to gain the most from data aggregation

MV/LV substations: data hub for
- MV Current, Voltage and FPI
- LV Current and voltage monitoring
- Smart meter data

Gathering all functions in one unit
- Optimise equipment and installation costs
- Guarantee a high industrial grade for concentrator functions
- Optimise the communication interface
- Naturally share the data

LV Distribution becomes under control
- Data base updating
- Voltage management
- Fault localisation
- . . .
Make the most of your energy™

Thank you for your attention!