Energy Economics Group

Vienna University of Technology
Electric Vehicle related Projects

- **ELEK-TRA Project** (2008-2009):
 - **Joanneum Research** Forschungsgesellschaft mbH
 - **AVL List GmbH**
 - **Hybrid & Electric Vehicles**
 - Technological Assessment
 - Ecological Assessment
 - Economic Assessment
 - Model-Based Scenarios of market- & fleet penetration

- **Vehicle-to-Grid Strategies** (2010-2012): AIT
 - **ICT - Vienna University of Technology**
 - **Salzburg AG**
 - **Interaction of EV on Grid**
 - Grid Requirements
 - Load Profiles
 - Charging Infrastructure
 - Business Models

- **Vehicle-to-Grid Interfaces** (2010-2011): ICT - Vienna University of Technology
 - **CURE**
 - **Salzburg AG**
 - Interfaces for EV use
MARKET- AND FLEET-PENETRATION OF HYBRID AND ELECTRIC CARS IN AUSTRIA
MODEL BASED ANALYSIS 2010-2050

Maximilian Kloess

Energy Economics Group – Vienna University of Technology
Background:

- ELEK-TRA Project 2008/2009:
 - Technological Assessment
 - Ecological Assessment
 - Economic Assessment
 - Model-Based Scenarios of market- & fleet penetration

Hybrid & Electric Vehicles

IEA Task Meeting – September 30th

KLOESS – Vienna University of Technology
Methodology

• **Combination of bottom-up and top-down modelling approaches**
 - Bottom-up vehicle technology model
 - Bottom-up fleet model
 - Top down modeling of transport demand and service level
 - Dynamic cost comparison of propulsion systems and fuels
 - Logit-model approach for consumer decision modelling (market shares of technologies)

• **Input parameters**
 - Fuel prices
 - Income level
 - Costs of technologies (components → vehicles)
 - Political framework conditions

→ **Scenarios 2010-2050**
 - Market- and fleet penetration of vehicle technologies
 - Mean vehicle characteristics (mass, power, efficiency)
 - Energy Consumptions (well-to-wheel)
 - Greenhouse gas emissions (well-to-wheel)
Scenario Settings

Scenario framework conditions:
• Fossil fuel price development (scenarios)
Scenario Settings

Scenario framework conditions:

• Fossil fuel price development (scenarios)
• Political framework conditions (taxes, subsidies etc)
 – Fuel Taxes: gasoline: 0,45€
 diesel: 0,35€
 – Tax on acquisition: 0-16%
 – Tax on ownership: 0 - 1500€

Policy Scenarios 2010 - 2050
Scenario Settings

Scenario framework conditions:

• Fossil fuel price development (scenarios)
• Political framework conditions (taxes, subsidies etc)
• Technological Learning of alternative powertrain technologies (key components)
• Fuel supply scenarios:
 – Biofuel blending
 – Sources of Electricity
Assumptions for presented results:

- Policy – Business-as-usual (BAU)
- Policy – Active + low fuel price scenario

<table>
<thead>
<tr>
<th>Year</th>
<th>Business as Usual Policy</th>
<th>Active Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vehicle Taxes
- **Tax on Ownership**
 - Engine Power
- **Tax on Acquisition**
 - Status 2010
 - CO2 threshold-140g/km
 - CO2 threshold-120g/km
 - CO2 threshold-100g/km

Fuel Taxes
- Status 2010
- Scheme 1
- Scheme 2
- Scheme 3
- Scheme 4

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Status 2010</th>
<th>Scheme 1</th>
<th>Scheme 2</th>
<th>Scheme 3</th>
<th>Scheme 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline</td>
<td>€ kWh-1</td>
<td>0.051</td>
<td>0.05</td>
<td>0.07</td>
<td>0.10</td>
</tr>
<tr>
<td>Diesel</td>
<td>€ kWh-1</td>
<td>0.036</td>
<td>0.036</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>CNG</td>
<td>€ kWh-1</td>
<td>0</td>
<td>0.036</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>Electricity</td>
<td>€ kWh-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Results

Business-as-usual (BAU)

Fleet development:

Final energy consumption:
Results

Business-as-usual (BAU)

WTW – Energy Consumption:

WTW – Greenhouse Gas Emissions:

IEA Task Meeting – September 30th

KLOESS – Vienna University of Technology
Results

Policy – Active

Fleet development:

2050:
70% Electric or Plug-In Hybrid Cars

Final energy consumption:

2050:
50% electricity in the energy supply
Results

Characteristics of new cars in the two scenarios:

Average mass:

<table>
<thead>
<tr>
<th>Year</th>
<th>BAU Scenario</th>
<th>Policy Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>1400 kg</td>
<td>1250 kg</td>
</tr>
<tr>
<td>2020</td>
<td>1150 kg</td>
<td>1300 kg</td>
</tr>
<tr>
<td>2030</td>
<td>1100 kg</td>
<td>1350 kg</td>
</tr>
<tr>
<td>2040</td>
<td>1050 kg</td>
<td>1400 kg</td>
</tr>
</tbody>
</table>

Greenhouse gas emissions:

<table>
<thead>
<tr>
<th>Year</th>
<th>BAU Scenario</th>
<th>Policy Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>180 g km⁻¹</td>
<td>160 g km⁻¹</td>
</tr>
<tr>
<td>2020</td>
<td>160 g km⁻¹</td>
<td>140 g km⁻¹</td>
</tr>
<tr>
<td>2030</td>
<td>140 g km⁻¹</td>
<td>120 g km⁻¹</td>
</tr>
<tr>
<td>2040</td>
<td>120 g km⁻¹</td>
<td>100 g km⁻¹</td>
</tr>
</tbody>
</table>

Average power:

<table>
<thead>
<tr>
<th>Year</th>
<th>BAU Scenario</th>
<th>Policy Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>60 kW</td>
<td>75 kW</td>
</tr>
<tr>
<td>2020</td>
<td>70 kW</td>
<td>80 kW</td>
</tr>
<tr>
<td>2030</td>
<td>75 kW</td>
<td>90 kW</td>
</tr>
<tr>
<td>2040</td>
<td>80 kW</td>
<td>100 kW</td>
</tr>
</tbody>
</table>

IEA Task Meeting – September 30th

KLOESS – Vienna University of Technology
Results

Policy – Active

WTW – Energy Consumption:

2010-2050:
-50% fossil energy demand with 100% renewable electricity

WTW – Greenhouse Gas Emissions:

2010-2050:
-50% with fossil electricity (nat. gas)
-65% with 100% renewable electricity
Results

Business-as-usual (BAU)

Fleet development:

Active Policy Scenario

Fleet development:
Thank you for your attention!

Maximilian KLOESS (Msc)
Energy Economics Group – Vienna University of Technology
Gusshausstraße 25-29, 1040 Wien,
+43 (1) 58801 37371
kloess@eeg.tuwien.ac.at
www.eeg.tuwien.ac.at