

Accounting for Price Response in RTP and Demand-Side Bidding Programs

Energy Modeling Forum Conference: Retail Participation in Competitive Power Markets

June 22, 2001 Steven Braithwait Christensen Associates

"Disconnected" Electricity Markets: *Fixed retail price* \Rightarrow *no demand response*

Connected Markets: *Demand Response Yields Lower Wholesale Prices*

Types of Demand Response Programs

- Demand-side bidding customers bid load reductions into the wholesale market
- "Buy-back," or pay-for-performance interruptible
 - Suppliers buy load reductions, *relative to baseline*, at price tied to market price
- Real-time (hourly) pricing
 - Full-time
 - Whenever prices exceed specified level

Accounting for Load Response in Operations and Billing

Demand bidding

Buy-back/ interruptible Load reductions available from bid; *verified later*

 Load reduction from offer, or estimated relative to FPL; *verified later*

RTP

Price-sensitive load levels estimated by service provider or ISO; no need to verify

- Cannot "measure" load reductions by metering
- Can estimate by subtracting *actual* load from *reference* load
- □ *Reference load* = the load that would have occurred had prices remained "normal"
- □ How to estimate *reference load*?

Sources of *Reference Load* **in Estimating Load Response**

- Historical load on same day-type (*e.g.*, summer Tuesday, with "hot" weather)
- Rolling average of loads on "non-event" days (*e.g.*, previous 10 weekdays)
- Average load in previous hours (*e.g.*, previous 3 hours)
- Predicted load from *econometric demand* model based on usage during period of interest

Key objective – avoid "gaming" possibilities

Measuring Customer Response to RTP

□ Use data on hourly loads, prices, and weather for period of interest (*e.g.*, summer months)

- Individual customers
- Aggregate by customer type (e.g., by UDC, commercial/industrial)
- Total load
- Estimate price response parameters from econometric model of customer demand

- $Ln (Load_h) = B1 * Ln (Price_h) + B2 * Ln (CDD_h)$

RTP Load Response Curve for Georgia Power (*Load Response as a Percent of Total RTP Load*)

Demand Response -- the Bottom Line

- Do customers respond to hourly market prices?
- Yes, in aggregate;
 considerable range across
 customers

- How much?
- Can you count on it?
- What evidence?
- □ Implications?

- ▶ 10 to 50% load reductions
- Yes; consistently larger response at higher prices
- Georgia Power, Duke Power, GPU Energy
- Lower wholesale prices;
 higher reliability; market
 efficiency

Example: Measuring RTP Load Response *Moderately Flexible, Weather Sensitive Customer (.06)*

Recent Evidence of Demand Response

Georgia Power *Real-Time Pricing (RTP)*

- 1,600 large C & I customers; 5,000 MW of load
- 8 years of load response experience
- Duke Power *Hourly Pricing*
 - 100 large industrial customers; 1,000 MW
- GPU Energy "Critical price" Residential TOU
 1997 pilot residential program
- Demand response parameters available in EPRI StatsBank database

GP RTP Load Response (*DA*): *Moderate Prices* (*Load response = 230 MW*; 8% of reference load)

GP RTP Load Response (*DA*): *Very High-Price* (*Load response* = 500 MW; 20% of reference load)

Duke Power Demand Response Experience (per Tom Taylor, Rates and Regulation)

□ 100 industrial customers; 1,000 MW

- Aggregate load response when Price > \$.25/kWh
 - 200 MW, or 20% of expected load
- \square 20 customers reduced load by > 5%
- Significant price elasticities for 25% of customers

GPU "Critical-price" TOU Pilot Rate

□ Three-tier TOU rate, plus *critical price* (\$.50/kWh)

□ Interactive communication system

- customers select thermostat settings and circuit priority at different price triggers
- utility can send critical price signal

□ Treatment and control groups (200 in each)

"Critical-price" TOU Rate Design

Load Response – *Critical Price Day* (Maximum reduction nearly 50%)

Conclusions

Methods for accounting for demand response differ for bidding and interruptible programs, vs. RTP

RTP load response curves for California may be developed based on existing evidence exists

For Additional Information:

- Customer Response to Market Prices How Much Can You Expect When You Need it Most?, Steven Braithwait and Michael O'Sheasy, EPRI Pricing Conference, July 2000.
- Residential TOU Response in the Presence of Interactive Communication Equipment, Steven Braithwait, in *Pricing in Competitive Electricity Markets*, Ahmad Faruqui, Ed.
- Demand Response *The Ignored Solution to California's Energy Crisis*, Steven Braithwait and Ahmad Faruqui, in *Public Utilities Fortnightly*, March 15, 2001.
- Contact: Steve Braithwait (steve@lrca.com) Christensen Associates 608.231.2266