Zonal Pricing and Demand-Side Bidding in the Norwegian Electricity Market

Tor Arnt Johnsen
Statistics Norway

Shashi Kant Verma
McKinsey and Company, Inc.

Catherine Wolfram
Harvard University

POWER Fifth Annual Research Conference
on Electricity Industry Restructuring
March 17, 2000 • Berkeley, California
Research Questions

1. **Descriptive:** Is there evidence of market power in Norway?

2. **Institutional:** How do zonal pricing and demand-side bidding affect the exercise of market power?

3. **Methodological:** How might we assess market power without information on marginal costs?
Norwegian System - Financial

- 3 organized markets:
 Forward and futures (Eltermin)
 Day-ahead (Elspot) and
 Regulation (Regulerkraftmarkedet)
- 15-20% of energy trades through Elspot market
- Bidders supply separate bids for each hour
- Last marginal bid determines uniform price
- Elspot market clears for 24 hours at a time
- Both demand and supply-side active
Norwegian System - Physical

- >99% hydro
- CR4 = 44%, CR1 = 26% (Statkraft)
- Trade with:
 - Sweden (combined with Norwegian Pool in 1996 to form Nord Pool)
 - Finland (joined Nord Pool in 1998)
 - Denmark (joined Nord Pool in 1999)
 - Russia
- Pricing areas determined weekly by Statnett
- Transmission constraints can lead to up to 8 areas
Nord Pool

- Five areas in Norway
 - Oslo (East)
 - Kristiansand (South)
 - Bergen (West)
 - Trondheim (Mid)
 - Tromsø (North)

- Sweden (1996)
- Finland (1998)
- Denmark (1999)
- Exchanges with Germany and Russia
Market concentration is relatively low in Norway. Kristiansand is the only area where Statkraft is not one of the four largest firms.

Largest Firms and Concentration Ratios (GWh)

<table>
<thead>
<tr>
<th></th>
<th>West</th>
<th>South</th>
<th>East</th>
<th>Mid</th>
<th>North</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statkraft</td>
<td>4,339</td>
<td></td>
<td>10,461</td>
<td>9,843</td>
<td>3,185</td>
</tr>
<tr>
<td>BKK</td>
<td>5,958</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norsk Hydro</td>
<td>2,455</td>
<td></td>
<td>7,159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKL</td>
<td>1,375</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lyse Kraft</td>
<td></td>
<td>4,082</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vest-Agder</td>
<td></td>
<td>2,732</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kristiansand</td>
<td></td>
<td>2,207</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aust-Agder</td>
<td></td>
<td>1,998</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oslo Energi</td>
<td></td>
<td></td>
<td>7,714</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hafslund</td>
<td></td>
<td></td>
<td>2,457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trondheim</td>
<td></td>
<td></td>
<td></td>
<td>3,176</td>
<td></td>
</tr>
<tr>
<td>Nor-Trondelag</td>
<td></td>
<td></td>
<td></td>
<td>2,303</td>
<td></td>
</tr>
<tr>
<td>Sor-Trondelag</td>
<td></td>
<td></td>
<td></td>
<td>1,582</td>
<td></td>
</tr>
<tr>
<td>Tromskraft</td>
<td></td>
<td></td>
<td></td>
<td>1,338</td>
<td></td>
</tr>
<tr>
<td>Nordkraft</td>
<td></td>
<td></td>
<td></td>
<td>586</td>
<td></td>
</tr>
<tr>
<td>Finnmkark</td>
<td></td>
<td></td>
<td></td>
<td>461</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>4,147</td>
<td>2,732</td>
<td>20,051</td>
<td>5,934</td>
<td>1,382</td>
</tr>
<tr>
<td>Total</td>
<td>18,274</td>
<td>13,751</td>
<td>47,842</td>
<td>22,838</td>
<td>6,952</td>
</tr>
<tr>
<td>CR4</td>
<td>77%</td>
<td>80%</td>
<td>58%</td>
<td>74%</td>
<td>80%</td>
</tr>
<tr>
<td>CR1</td>
<td>33%</td>
<td>30%</td>
<td>22%</td>
<td>43%</td>
<td>46%</td>
</tr>
</tbody>
</table>

Source: Samkjøringen (1992)
Prices have never been set separately in all five areas, and it is rare to have four areas.

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>70.6%</td>
<td>25.0%</td>
<td>4.4%</td>
<td>0.0%</td>
</tr>
<tr>
<td>1997</td>
<td>59.0%</td>
<td>33.1%</td>
<td>7.9%</td>
<td>0.0%</td>
</tr>
<tr>
<td>1998</td>
<td>46.3%</td>
<td>36.3%</td>
<td>15.0%</td>
<td>2.3%</td>
</tr>
</tbody>
</table>
Hydroelectric Costs

- Marginal costs are mainly the shadow value of water taken out of reservoir.

- Shadow value of water is a function of:
 - expected future inflows
 - expected future prices
 - likelihood of draining reservoir or of spillage

- Plants with small reservoirs relative to their turbine capacity can choose to produce only when prices are high -- they have high marginal costs.
Prices are usually lower in summer than winter, although unexpected shortages such as in 1996 can drive up summer prices.

Mean Weekly Price in the Elspot Market
Empirical Approach

Start with semi-reduced form pricing equation:

\[p = \mu \cdot mc \]

where \(\mu \) is:
- increasing in market concentration
- decreasing in demand elasticity

Taking logs, this becomes:

\[\ln(p) = \ln(mc) + \phi + \varepsilon \]

for notational ease, we assume \(\mu = \exp(\phi) \exp(\varepsilon) \)
Empirical Approach (con’t)

1. Compare periods when transmission constraints bind and markets are smaller to periods without transmission constraints
\[\ln(p_c) - \ln(p_u) = \ln(mc_c) - \ln(mc_u) + \phi_c - \phi_u + \epsilon_c - \epsilon_u \]

2. Compare nights (low elasticity) to days (high elasticity)
\[\left[\ln(p_{n-c}) - \ln(p_{n-u}) \right] - \left[\ln(p_{d-c}) - \ln(p_{d-u}) \right] = \Delta \ln(mc)_n - \Delta \ln(mc)_d + \Delta \phi_n - \Delta \phi_d + \Delta \epsilon_n - \Delta \epsilon_d \]

3. Control for cost/demand shocks with prices in comparable area
\[\gamma = \left[\Delta \ln(p_{n-c}) - \Delta \ln(p_{n-u}) \right] - \left[(\Delta \ln(p_{d-c}) - \Delta \ln(p_{d-u})) > 0 \right] \]
Empirical Approach - Summary

- Basic hypothesis: if transmission constraints during the night lead to higher price increases than constraints during the day (when demand is more elastic), we conclude there is evidence of market power.

- Controlling for:
 - price differences between nights and days without constraints
 - price movements in “control” area
We Find

- Norwegian market quite competitive.
- In one area, prices rise by about 15% when transmission constraints bind and demand less elastic.
 → The local market power created by transmission constraints can cause large distortions in deregulated electricity markets.
 → An active demand-side mitigates market power.
Conclusions

- Our results provide a joint test of market power and the extent to which it is constrained by the demand side

- We find some evidence of market power in Kristiansand
 - Statkraft has no presence here?
 - Financially constrained counties?